Isolation of Stenotrophomonas pavanii DSM 25135(T) from Textile Effluent and Bioremediation of Carcinogenic Dye Basic Fuchsin in Free Cell vs Immobilized Cell System

IJEP 42(1): 25-32 : Vol. 42 Issue. 1 (January 2022)

Pallavi Yuvraj Babar1, Sharvari Amol Samant2 and Mansee Kapil Thakur1*

1. Mahatma Gandhi Mission Institute of Medical Sciences (MGMIHS), Central Research Laboratory, Department of Medical Biotechnology, Navi Mumbai – 410 209, Maharashtra, India
2. MGM Medical College, Department of Medical Biotechnology, Navi Mumbai – 410 209, Maharashtra, India

Abstract

The study focuses on the ability of bacterial strain Stenotrophomonas pavanii DSM 25135(T) isolated from textile effluent to decolourize one of the commonly used textile colourants, Basic Fuchsin, which is a carcinogen. The isolated bacterial strain was screened for its biodegrading capability at high dye concentrations (0.05% and 0.1% w/v) and at different time intervals (24 hr, 48 hr, 72 hr, 96 hr and 120 hr). The experimental results showed that Stenotrophomonas pavanii has a high capability for decolourizing this triphenylmethane dye at a dye concentration of 0.1% w/v. The capability of this bacterial strain to degrade the dye was tested in the free cell system as well as in the immobilized cell system. The isolate showed enhanced degradation of the dye (90.4%) in the immobilized state within 120 hr. The isolated microbe can, therefore, be utilized as a pre-treatment tool in the decolourization step adopted by various textile industries.

Keywords

Bioremediation, Biodegradation, Textile effluent, Water pollution, Decolourization, Basic Fuchsin, Immobilization, Calcium-alginate beads

References

  1. Nigam, P., et al. 1996. Microbial process for the decolourization of textile effluent containing azo, diazo and reactive dyes. Process Biochem., 31(5): 435-442.
  2. Shrivastava, J.N., N. Raghav and A. Singh 2012. Laboratory scale bioremediation of the Yamuna water with effective microbes (EM) technology and nanotechno-logy. J. Bioremed. Biodegrad., 3(8).
  3. Gita, S., A. Hussan and T.G. Choudhury. 2017. Impact of textile dyes waste on aquatic environments and its treatment. Env. Ecol., 35(3C): 2349-2353.
  4. Krížová, H. 2015. Natural dyes: Their past, present, future and sustainability. In Recent development in fibrous material science. Prague: Kosmas Publishing.
  5. Yang, X., et al. 2015. Highly effective removal of Basic Fuchsin from aqueous solutions by anionic polyacrylamide/graphene oxide aerogels. J. Colloid Interface Sci., 453: 107-114.
  6. Ren, S., et al. 2006. Decolourization of triphenylmethane, azo and anthraquinone dyes by a newly isolated aeromonas hydrophila strain. Appl. Microbiol. Biotech., 72(6): 1316-1321.
  7. El Haddad, M. 2016. Removal of Basic Fuchsin dye from water using mussel shell biomass waste as an adsorbent: Equilibrium, kinetics and thermody-namics. J. Taibah University Sci., 10(5): 664-674.
  8. Anonymous. Nutrient broth: Technical data. HiMedia Laboratories. Available at http://himedia labs.com/TD/M002.pdf.
  9. Kumar, N.M. and D. Saravanan. 2015. Isolation of dye degrading bacteria from textile effluent. J. Chem. Pharm. Res., 7(3):2214-2218.
  10. Sharma, D.K., et al. 2004. Isolation and characterization of microorganisms capable of decolouri-zing various triphenylmethane dyes. J. Basic Microbiol. Int. J. Biochem. Physiol. Genetics Morphol. Ecol. Microorganisms.44(1): 59-65.
  11. Keweloh, H., et al. 1989. Protection of bacteria against toxicity of phenol by immobilization in calcium alginate. Appl. Microbiol. Biotech., 31(4): 383-389.
  12. Gao, H., et al. 2016. Immobilization of multi-biocatalysts in alginate beads for cofactor regeneration and improved reusability. J. Visualized Experiments. 110: 53944.
  13. Beshay, U. 2003. Production of alkaline protease by Teredinobacter turnirae cells immobilized in ca-alginate beads. African J. Biotech., 2(3): 60-65.
  14. Ren, S., et al. 2006. Decolourization of triphenylmethane, azo and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain. Appl. Microbiol. Biotech.,72(6): 1316-1321.
  15. An, S.Y., et al. 2002. Decolourization of triphenylmethane and azo dyes by Citrobacter sp. Biotech. Letters.24(12): 1037-1040.
  16. Hemraj, V., S. Diksha and G. Avneet. 2013. A review on commonly used biochemical test for bacteria. Innovare. J. Life Sci., 1(1): 1-7.
  17. Brink, B. 2010. Urease test protocol. American Society for Microbiology, Washington, DC.
  18. Shields, P. and L. Cathcart. 2010. Oxidase test protocol. American Society for Microbiology, Washington, DC.
  19. Kim, M. and J. Chun. 2014. 16S rRNA gene-based identification of bacteria and archaea using the EzTaxon server. Methods Microbiol., 41: 61-74.
  20. Koyani, R.D., et al. 2014. Biodegradation of synthetic textile dyes by Mn dependent peroxidase produced by Phanerochaete chrysosporiumInt. J. Env. Sci., 5(3): 652-663.
  21. Partovinia, A. and B. Rasekh. 2018. Review of the immobilized microbial cell systems for bioremediation of petroleum hydrocarbons polluted environments. Critical Reviews Env. Sci. Tech., 48(1): 1-38.
  22. Iþýk, M. and D.T. Sponza. 2004. Decolourization of azo dyes under batch anaerobic and sequential anaerobic/aerobic conditions. J. Env. Sci. Health Part A. 39(4): 1107-1127.
  23. Sneha, U., R. Poornima and S. Sridhar. 2013. Decolourization of synthetic textile dyes using Pseudomonas putidaJ. Chem. Pharm. Res., 5(5): 219-225.
  24. Pratiwi, D., et al. 2017. Decolourization and degradation of Batik dye effluent using Ganoderma lucidum. IOP Conf. Series Earth. Env. Sci.,101(1): 012034.
  25. Asad, S., et al. 2007. Decolourization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresour. Tech.,98(11): 2082-2088.
  26. Chen, K.C., et al. 1999. Microbial decolourization of azo dyes by Proteus mirabilisJ. Ind. Microbiol. Biotech., 23(1): 686-690.
  27. Chen, C.C., et al. 2007. Biodegradation of crystal violet by Pseudomonas putidaBiotech. Letters.29(3): 391-396.
  28. Jang, M.S., et al. 2005. Triphenylmethane reductase from Citrobacter sp. strain KCTC 18061P: Purification, characterization, gene cloning and overexpression of a functional protein in Escherichia coliAppl. Env. Microbiol., 71(12): 7955-7960.
  29. Jing, W.U., et al. 2009. Isolation and characterization of Pseudomonas otitidis WL-13 and its capacity to decolourize triphenylmethane dyes. J. Env. Sci.,21(7): 960-964.
  30. Hayase, N., K. Kouno and K. Ushio. 2000. Isolation and characterization of Aeromonas sp. B-5 capable of decolourizing various dyes. J. Biosci. Bioeng., 90(5): 570-573.
  31. Chen, K.C., et al. 2003. Decolourization of the textile dyes by newly isolated bacterial strains. J. Biotech., 101(1): 57-68.