IJEP 42(2): 209-217 : Vol. 42 Issue. 2 (February 2022)
M. Rajamehala1*, A. Kaviprabha1, B. Gopalakrishnan2 and A. Muthu Kumara Pandian1
1. Vivekanandha College of Engineering for Women, Department of Biotechnology, Elaiyampalayam – 637 205, Tamil Nadu, India
2. Annamalai University, Department of Chemical Engineering, Annamalai Nagar – 608 002, Tamil Nadu, India
Abstract
Nanocomposite is a solid material where one of the stages has one, a couple of components under 100 nanometer or structure having nano-scale repeat isolates between the qualification arranges that make upto a material. This audit talks about the items, applications and mechanical improvements in polymer, earthenware and metal nano- composites. It is indicated that polymer nanocomposites and the materials utilized in their creation are industrially accessible and discovering applications in a few enterprises, including car, military and nourishment, due to their improved mechanical, electrical and warm properties. Fired and metallic nanocomposites are at a prior phase of advancement and a basic issue to determine is upgrading the scattering of nanomaterial in the networks.
Keywords
Nanocomposite, Nanomaterial, Earthenware, Metal, Polymer
References
- Roy, R., et al. 1986. Alternative perspectives on ‘quasicrystallinity’: non-uniformity and nanocom-posites. Mater. Letters. 4(8-9):323-328.
- Schmidt, D., et al. 2002. New advances in polymer/layered silicate nanocomposites. Curr. Opinion Solid State Mater. Sci., 6(3):205-212.
- Gleiter, H. 1992. Materials with ultrafine microstructures : Retrospectives and perspectives. Nanostructured Mater., 1(1):1-19.
- Braun, T., et al. 1997. Nanoscience and nanote-chnology on the balance. Scientrometrics. 38(2): 321-325.
- Kamigaito, O. 1991. What can be improved by nanometer composites? J. Japan Soc. Powder Metal., 38:315-321.
- Iijima, S. 1991. Helical microtubes of graphitic carbon. Nature. 354 (6348) : 56-58.
- Biercuk, M.J., et al. 2002. Carbon nanotube composites for thermal management. Appl. Physics letters. 80(15):2767-2769.
- Choa, Y.H., et al. 2003. Preparation and characterization of metal. 266 (1-2): 12-19.
- Alexandure, M. and P. Dubois. 2000. Polymer-layered silicate nanocomposites : Preparation, properties and uses of a new class of materials. Mater. Sci. Eng., 28:1-63.
- Wypych, F., et al. 1997. Preparation of nanocom-posites based on the encapsulation of conducting polymers into 2H-MoS2and IT-TiS2. Quimica Nova. 20 (4): 356-360.
- Pandey, J.K., et al. 2005. Recent advances in biodegradable nanocomposites. J. Nanosci. Nano-tech., 5(4):497-526.
- Sternitzke, M. 1997. Review : Structural ceramic nanocomposites. J. European Ceramic Soc., 17(9): 1061-1082.
- Gangopadhyay, R. and D. Amitabha. 2000. Conducting polymer nanocomposites : A brief overview. Chem. Mater., 12(7):608-622.
- Ray, S.S. and M. Okamoto. 2003. Polymer-layered silicate nanocomposites : A review from preparation to processing. Progress Polymer Sci., 28(11): 1539-1641.
- Pandey, J.K., et al. 2005. An overview on the degradability of polymer nanocomposites. Polymer Degradation Stability. 88(2):234-250.
- Fernando, W. and K.G. Satyanarayana. 2005. Functionalization of single layers and nanofibres : A new strategy to produce polymer nanocom-posites with optimized properties. J. Colloid Interface Sci., 285 (1):532-543.
- Theng, B.K.G. 1974. The chemistry of clay organic reactions. Wiley, New York.
- Ogawa, M. and K. Kuroda. 1997. Preparation of inorganic composites through intercalation of organoammoniumions into layered silicates. Bull. Chem. Soc. Japan. 70(11):2593-2618.
- Thostenson, E.T., Z. Ren and T.W. Chou. 2001. Advances in the science and technology of carbon nanotubes and their composites : A review. Composites Sci. Tech., 61(13):1899-1912.
- Nakahira, A. and K. Niihara. 1992. Structural ceramics-ceramic nanocomposites by sintering method : Roles of nano-size particles. J. Ceramic Soc. Japan. 100(4):448-453.
- Ennas, G., et al. 1998. Sol-gel preparation and characterization of Ni-SiO2nanocomposites. J. Non-Crystalline Solids. 232-234:587-593.
- Xia, Z., et al. 2004. Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Materialia. 52(4):931-944.
- An, J.W., D.H. You and D.S. Lima. 2003. Tribological properties of hot-pressed alumina-CNT composites. Wear. 255(1-6):677-681.
- Kamalakaran, R., et al. 2003. In-situ formation of carbon nanotubes in an alumina-nanotube com-posite by spray pyrolysis. Carbon. 41(4):2737-2741.
- Baker, C., S. I. Shah and S.K. Hasanain. 2004. Magnetic behaviour of iron and iron-oxide nano-particle/polymer composites J. Magnetism Magnetic Mater., 280 (2-3):412-418.
- Yoon, E.S., et al. 2002. Microstructure and sintering behaviour of W-Cu nanocomposite powder produced by thermochemical process. Int. J. Refractory Metals Hazard. Mater., 20(3):201-206.
- Branagan, D.J. 2000. In powder metallurgy, particulate materials for industrial applications. Ed D.E.Alman and J.W. Newkirk. TMS Publication, St. Louis.
- Branagan, D.J. and Y. Tang. 2002. Developing extreme hardness (>15 Gpa) in iron based nanocomposites. Composites Part A Appl. Sci. Manufacturing. 33(6):855-859.
- Chen, W.X., J.Y. Lee and Z. Liu. 2002. Electrochemical lithiation and de-lithiation of carbon nanotube-Sn2Sb nanocomposites. Electrochem. commun., 4(3):260-265.
- Jimenez, G., et al. 1997. Structure and thermal/mechanical properties of poly(E-caprolactone) clay blend. J. Appl. Polymer Sci., 64:2211-2220.
- Ogata, N., et al. 1997 Structure and thermal/mechanical properties of poly(1-lactide) clay blend. J. Polymer Sci. Part B Polymer physics. 35(2): 389-396.
- Gangopadhyay, R. and D. Amitabha. 2000. Conducting polymer nanocomposites : A brief overview. Chem. Mater., 12(7):608-622.
- Azioune, A., et al. 1999. Adsorption of human serum albumin onto polypyrrole powder and polypyrrole-silica nanocomposites. Synthetic Metals. 102 (1-3):1419-1420.
- Ogasawara, T., et al. 2004. Characterization of multi-walted carbon nanotube/phenylethynyl terminated polyimide composites. Composites Part A Appl. Sci., 35(1):67-74.
- Liu, J., et al. 2002. Preparation and characteristic of a new class of silica/polyimide nanocomposites. J. Mater. Sci., 37(14): 3085-3088.
- Roslaniec, Z., G. Broza and K. Schulte. 2003. Nanocomposites based on multiblock polyester elastomers (PEE) and carbon nanotubes (CNT). Composite Interfaces. 10(1):95-102.
- Kango, S., et al. 2013. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites – A review. Prog. Polym. Sci., 38:1232-1261.
- Ray, S. and M. Okamoto. 2003. Polymer/layered silicate nanocomposites : A review from preparation to processing. Prog. Polym. Sci., 28: 1539-1641.
- Arora, A. and G.W. Padua. 2010. Review : Nanocomposites in food packaging. J. Food Sci., 75:R43-R49.
- Bugnicourt, E., et al. 2016. Recent prospects in the inline monitoring of nanocomposites and nanocoatings by optical technologies. Nanomater., 6:150.
- Mittal, V. 2009. Optimization of polymer nanocomposite properties. Wiley-VCH Verlag GmbH and co., Germany.
- Rong, M.Z., M.Q. Zhang and W.H. Ruan. 2006. Surface modification of nanoscale filters for improving properties of polymer nanocomposites : A review. Mater. Sci. Tech., 22:787-796.
- Fekete, E., et al. 1990. Surface modification and characterization of particulate mineral filters. J. Colloid Interface Sci., 135:200-208.
- Xia, H.S. and Q. Wang. 2003. Preparation of conductive polyaniline/nanosilica particle composites through ultrasonic irradiation. J. Appl. Polym. Sci., 87:1811-1817.
- Lapshin, S., S.K. Swain and A.I. Isayev. 2008. Ultrasound aided extrusion process for preparation of polyolefin-clay nanocomposites. Polym. Eng. Sci., 48:1584-1591.
- Isayev, A. I., C.K. Hong and K. J. Kim. 2003. Continous mixing and compounding of polymer/filter and polymer/polymer mixtures with the aid of ultrasound. Rubber Chem. Tech., 76:923-947.
- Duncan, T.V. 2011. Applications of nanotechnology in food packaging and food safety : Barrier materials, antimicrobials and sensors. J. Colloid Interface Sci., 363.
- 48. Ndoro, T.V., et al. 2011. Interface of grafted and ungrafted silica nanoparticles with a polystyrene matrix : Atomistic molecular dynamics simulations. Macromolecules. 44:2316-2327.
- Yano, K., A. Usuki and A. Okada. 1997. Synthesis and properties of polyimide-clay hybrid films. J. Polym. Sci. Part A. 35:2289-2294.
- Geim, A.K. and K.S. Novoselov. 2007. The rise of graphene. Nat. Mater., 6:183-191.
- Huang, P.Y., et al. 2011. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature. 469:389-392.
- Suk, J.W., et al. 2010. Mechanical properties of monolayer graphene oxide. ACS Nano. 4:6557-6564.
- Casiraghi, C., J. Robertson and A.C. Ferrari. 2007. Diamond, like carbon for data and beer storage. Mater. Today. 10:44-53.
- Castillo, L., et al. 2013. Thermoplastic starch films reinforced with tale nanoparticles. Carbohydr. Polym., 95:664-674.
- Vladimirov, V., et al. 2006. Dynamic mechanical and morphological studies of isotactic polypropylene/fumed silica nanocomposites with enhanced gas barrier properties. Compos. Sci. Tech., 66:2935-2944.
- Wen, P., et al. 2016. Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/b-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem. 196:996-1004.
- Fabra, M.J., et al. 2015. Development of multilayer corn starch-based food packaging structures containing b-carotene by means of the electro-hydrodynamic processing. Starch/Staerke. 68:603-610.