Environmental Effects of Cement Production and a Sustainable Solution: Review

IJEP 43(13): 1221-1231 : Vol. 43 Issue. 13 (Conference 2023)

Prashant Sharma* and Sudhir Kumar Goyal

GLA University, Department of Civil Engineering, Mathura – 281 406, Uttar Pradesh, India

Abstract

The aim of this review paper is to provide comprehensive knowledge of alternative fuels and alternative materials for cement and its production. Due to rapid urbanisation and the demand for luxury lifestyles, the depletion of natural resources has led to high carbon emissions, global warming, ozone layer depletion, etc. In this review article, some alternative fuels are suggested based upon the different articles reviewed with alternative cementitious materials, like granite dust, marble dust and different types of agriculture waste ashes, like rice straw ash, wheat straw ash, bamboo leaf ash, banana leaf ash, plantain peel ash and coffee husk ash. Replacing cement in an appropriate ratio leads to a reduction in carbon emissions. Several mechanical and durability properties were reviewed and suggested as optimal replacement values for cementitious materials from different waste materials.

Keywords

Carbon emission, Sustainable materials, Agricultural waste

References

  1. Zijdeman, R. L. 2017. Life expectancy at birth: the numbers behind the means. Low Countries J. Social Eco. History. 14(2): 85. doi: 10.18352/TSEG. 918.
  2. Pamuk, S. 2019. Economic growth and human development since 1820 (chapter 2). Uneven centuries. pp 22-54. doi: 10.1515/9780691184982-004/PDF.
  3. Barro, R. J. and J. W. Lee. 2013. A new dataset of educational attainment in the world, 1950-2010. J. Develop. Eco., 104: 184–198. doi: 10.1016/j.jdeveco.2012.10.001.
  4. United Nations ESCAP. 2018. Asia-Pacific Sustain. Develop. J., (1).
  5. Lee, J. W. and H. Lee. 2016. Human capital in the long run. J. Develop. Eco., 122: 147–169. doi: 10.1016/j.jdeveco.2016.05.006.
  6. Machalek, D. and K. M. Powell. 2019. Model predictive control of a rotary kiln for fast electric demand response. Miner Eng., 144: 106021. doi: 10.1016/J.MINENG.2019.106021.
  7. Reporting matters. World Business Council for Sustainable Development.
  8. Oecd. 2007. World energy outlook 2007: China and India insights. Organization for Economic Cooperation and Development.
  9. Vassilev, S.V., et al. 2013. An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel. 105: 40–76. doi: 10.1016/J.FUEL. 2012.09.041.
  10. Vassilev, S.V., et al. 2010. An overview of the chemical composition of biomass. Fuel. 89(5): 913–933. doi: 10.1016/J.FUEL.2009.10.022.
  11. Alonso, M. M., et al. 2019. Olive biomass ash as an alternative activator in geopolymer formation: A study of strength, radiology and leaching beha-viour. Cem. Concr. Compos., 104: 103384. doi: 10.1016/J.CEMCONCOMP.2019.103384.
  12. Rodier, L., et al. 2019. Potential use of sugarcane bagasse and bamboo leaf ashes for elaboration of green cementitious materials. J. Clean Prod., 231: 54–63. doi: 10.1016/J.JCLEPRO.2019.05.208.
  13. Ataie, F. F. and K. A. Riding. 2016. Influence of agricultural residue ash on early cement hydration and chemical admixtures adsorption. Constr. Build. Mater., 106: 274–281. doi: 10.1016/J.CONBUI LDMAT.2015.12.091.
  14. Gauthier, D. 2009. ECRA CCS Project- Report about phase II (TR-ECRA-106/2009). European cement Research Academy GmbH, Germany.
  15. Mohanty, I., et al. 2023. Waste to valuable resource: Application of copper slag and steel slag in concrete with reduced carbon dioxide emissions. Innov. Infrastr. Sol., 8(4): 112. DOI: 10.1007/s41 062-023-01090-0.
  16. Li, Y., et al. 2023. Change of human footprint in China and its implications for carbon dioxide (CO2) emissions. Remote Sensing. 15(2): 426. doi: 10.3 390/rs15020426.
  17. Sousa, V., et al. 2023. Industrial production of recycled cement: Energy consumption and carbon dioxide emission estimation. Env. Sci. Poll. Res. Int., 30(4): 8778-8789. DOI: 10.1007/s11356-022-20887-7.
  18. Cavelius, P., et al. 2023. The potential of biofuels from first to fourth generation. PLoS Biol., 21(3): e3002063. doi: 10.1371/JOURNAL.PBIO.3002 063.
  19. Ramasamy, V., et al. 2023. A comprehensive review on advanced process control of cement kiln process with the focus on MPC tuning strategies. J. Process Cont., 121: 85–102. doi: 10.1016/j.jprocont.2022.12.002.
  20. Rahman, N.A., et al. 2015. Synthesis of mesopo-rous silica with controlled pore structure from bagasse ash as a silica source. Colloids Surfaces A Physicochem. Eng. Aspects. 476: 1-7.
  21. Trezza, M.A. and A.N. Scian. 2000. Burning wastes as an industrial resource: Their effect on Portland cement clinker. Cem. Concr. Res. 30(1) 1:137–144. doi: 10.1016/S0008-8846(99)00221-5.
  22. Madlool, N. A., et al. 2011. A critical review on energy use and savings in the cement industries. Renew. Sustain. Energy Reviews. 15(4): 2042–2060. doi: 10.1016/J.RSER.2011.01.005.
  23. Kusuma, R., et al. 2022. Sustainable transition towards biomass-based cement industry: A review. Renewable Sustain. Energy Reviews. 163: 112503.
  24. Sahoo, N. A., et al. 2022. Review on energy conservation and emission reduction approaches for cement industry. Env. Develop., 44: 100767.
  25. Busch, P., et al. 2022. Literature review on policies to mitigate GHG emissions for cement and concrete. Resour. Conservation Recycling. 182: 106278.
  26. Mishra, U., et al. 2022. A systematic review on the impact of cement industries on the natural environment. Env. Sci. Poll. Res., 29(13): 18440–18451. doi: 10.1007/S11356-022-18672-7.
  27. Qazi, U.Y. 2022. Future of hydrogen as an alternative fuel for next-generation industrial applications; challenges and expected opportunities. Energies. 15(13): 4741. DOI: 10.3390/en15134741.
  28. Usón, A.A., et al. 2013. Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options. Renew. Sustain. Energy Reviews. 23: 242–260. doi: 10.1016/j.rser.2013.02.024.
  29. Zieri, W. and I. Ismail. 2019. Alternative fuels from waste products in cement industry. In Handbook of ecomaterials. 2: 1183–1206. doi: 10.1007/978-3-319-68255-6_142.
  30. Waltisberg, J. and R. Weber. 2020. Disposal of waste-based fuels and raw materials in cement plants in Germany and Switzerland– What can be learned for global co-incineration practice and policy? Emerg. Contam., 6: 93–102. doi: 10.1016/j.emcon.2020.02.001.
  31. Zeng, Q., et al. 2023. Synergistic utilization of blast furnace slag with other industrial solid wastes in cement and concrete industry: Synergistic mechanisms and applications. Green Energy Resour., 1(2): 100012.
  32. Sharma, P., et al. 2023. Co-processing of petcoke and producer gas obtained from RDF gasification in a white cement plant: A techno-economic analysis. Energy. 265(10): 126248.
  33. Vasiliu, L., et al. 2023. Capitalization of tires waste as derived fuel for sustainable cement production. Sustain. Energy Tech. Assess., 56(8): 103104.
  34. Shen, S.C., et al. 2023. Computational design and manufacturing of sustainable materials through first-principles and materiomics. Chem. Rev., 123(5): 2242-2275. doi: 10.1021/ACS.CHEMREV.2C00 479.
  35. Ghorbani, S., et al. 2019. Mechanical and durability behaviour of concrete with granite waste dust as partial cement replacement under adverse exposure conditions. Constr. Build. Mater., 194: 143–152. doi: 10.1016/J.CONBUILDMAT.2018.11.0 23.
  36. Reddy, B., et al. 2023. Strength and durability of concrete by partial replacement of cement by fly ash and fine aggregates by granite dust. Mater. Today Proceedings. DOI:10.1016/j.matpr.2023.0 3.450.
  37. Dobiszewska, M., et al. 2023. Utilization of rock dust as cement replacement in cement composites: An alternative approach to sustainable mortar and concrete productions. J. Building Eng., 69: 106180. doi: 10.1016/j.jobe.2023.106180.
  38. Li, T. and L. Tier. 2023. Microscopic mechanism analysis of the influence of stone powder with different replacement ratio on concrete performance. Arabian J. Geosci., 16(1). doi: 10.1007/S12517-022-11119-W.
  39. Qian, S., et al. 2023. Application of granite fines to substitute sand in concrete production. Lecture Notes Civil Eng., 302: 36–45. doi: 10.1007/978-981-19-7331-4_4/COVER.
  40. Mashaly, A.O., B.N. Shalaby and M.A. Rashwan. 2018. Performance of mortar and concrete incorporating granite sludge as cement replacement. Constr. Build. Mater., 169: 800–818. doi: 10.101 6/J.CONBUILDMAT.2018.03.046.
  41. Farooq, O., et al. 2023. Properties of blended mortars produced with recycled by-products from different waste streams. Develop. Built Env., 14: 100156. doi: 10.1016/J.DIBE.2023.100156.
  42. Zhang, H., et al. 2019. Performance of ultra-high performance concrete (UHPC) with cement partially replaced by ground granite powder (GGP) under different curing conditions. Constr. Build. Mater., 213: 469–482. doi: 10.1016/j.conbuildmat.2019.04. 058.
  43. Lv, X.S., et al. 2022. Potassium methyl silicate (CH5SiO3Na) assisted activation and modification of alkali-activated-slag-based drying powder coating for protecting cement concrete. Constr. Build. Mater., 326: 126858. doi: 10.1016/j.conbuildmat. 2022.126858.
  44. Gupta, L. K. and A. K. Vyas. 2018. Impact on mechanical properties of cement sand mortar containing waste granite powder. Constr. Build. Mater., 191: 155–164. doi: 10.1016/j.conbuildmat.2018. 09.203.
  45. Singh, M., A. Srivastava and D. Bhunia. 2019. Long term strength and durability parameters of hardened concrete on partially replacing cement by dried waste marble powder slurry. Constr. Build. Mater., 198: 553–569. doi: 10.1016/J.CONBUILDMAT. 2018.12.005.
  46. Liu, B., et al. 2023. A preliminary study on waste marble powder-based alkali-activated binders. Constr. Build. Mater., 378: 131094. doi: 10.1016/J.CONBUILDMAT.2023.131094.
  47. Kashyap, V. S., G. Sancheti and J. S. Yadav. 2023. Durability and microstructural behaviour of nano silica-marble dust concrete. Cleaner Mater., 7: 100165. doi: 10.1016/J.CLEMA.2022.100165.
  48. Villar-Cociña, E., et al. 2011. Pozzolanic behaviour of bamboo leaf ash: Characterization and determination of the kinetic parameters. Cem. Concr. Compos., 33(1): 68–73. doi: 10.1016/J.CEMCONCO-MP.2010.09.003.
  49. Frías, M., et al. 2012. Characterization and properties of blended cement matrices containing activated bamboo leaf wastes. Cem. Concr. Compos., 34(9): 1019–1023. doi: 10.1016/J.CEMCONCO MP.2012.05.005.
  50. Perez-Diaz, E.D., et al. 2023. Evaluation of bamboo cortex ash as supplementary cementitious material: Comparative analysis with sugarcane bagasse ash and natural pozzolan. J. Build. Eng., 66: 105846. doi: 10.1016/J.JOBE.2023.105846.
  51. Nduka, D.O., et al. 2022. Mechanical and durability property dimensions of sustainable bamboo leaf ash in high-performance concrete. Clean Eng. Tech., 11: 100583. doi: 10.1016/J.CLET.2022.100583.
  52. Thomas, B.S., et al. 2021. Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: A comprehensive review. J. Build. Eng., 40: 102332. doi: 10.1016/J.JOBE. 2021.102332.
  53. Tavares, J. C., et al. 2022. Use of banana leaf ash as partial replacement of Portland cement in eco-friendly concretes. Constr. Build. Mater., 346: 128467. doi: 10.1016/J.CONBUILDMAT.2022. 128467.
  54. Wasim, M., et al. 2022. Future directions for the application of zero carbon concrete in civil engineering– A review. Case Studies Constr. Mater., 17: e01318. doi: 10.1016/J.CSCM.2022.E01318.
  55. Mim, N. J., et al.. Eco-friendly and cost-effective self-compacting concrete using waste banana leaf ash. J. Build. Eng., 64: 105581. doi: 10.1016/J.JOBE.2022.105581.
  56. Malhotra, V. M. 2010. Global warming and role of supplementary cementing materials and superplas-ticisers in reducing greenhouse gas emissions from the manufacturing of Portland cement. Int. J. Structural Eng., 1(2): 116–130. doi: 10.1504/IJSTRUC TE.2010.031480.
  57. Mirmohamadsadeghi, S. and K. Karimi. 2022. Recovery of silica from rice straw and husk (chapter 21). In Current developments in biotechnology and bioengineering: Resource recovery from wastes. pp 411–433. doi: 10.1016/B978-0-444-64321-6.00 021-5.
  58. Lim, J.S., et al. 2012. A review on utilisation of biomass from rice industry as a source of renewable energy. Renew. Sustain. Energy Reviews. 16(5): 3084–3094. doi: 10.1016/J.RSER.2012. 02.051.
  59. Agwa, I.S., et al. 2020. Effects of using rice straw and cotton stalk ashes on the properties of lightweight self-compacting concrete. Constr. Build. Mater., 235: 117541. doi: 10.1016/J.CONBUI LDMAT.2019.117541.
  60. Munshim, S. and R. P. Sharma. 2019. Utilization of rice straw ash as a mineral admixture in construction work. Mater. Today Proc., 11: 637–644. doi: 10.1016/J.MATPR.2019.03.021.
  61. Roselló, J., et al. 2017. Rice straw ash: A potential pozzolanic supplementary material for cementing systems. Ind. Crops. Prod., 103: 39–50. doi: 10.1016/J.INDCROP.2017.03.030.
  62. Pandey, A. and B. Kumar. 2019. Effects of rice straw ash and micro silica on mechanical properties of pavement quality concrete. J. Build. Eng., 26: 100889. doi: 10.1016/J.JOBE.2019.100889.
  63. Binici, H. and O. Aksogan. 2011. The use of ground blast furnace slag, chrome slag and corn stem ash mixture as a coating against corrosion. Constr. Build. Mater., 25(11): 4197–4201. doi: 10.1016/J.CONBUILDMAT.2011.04.057.
  64. Al-Akhras, N.M. and B.A. Abu-Alfoul. 2002. Effect of wheat straw ash on mechanical properties of autoclaved mortar. Cem. Concr. Res., 32(6): 859–863. doi: 10.1016/S0008-8846(02)00716-0.
  65. Qudoos, A., et al. 2018. Effect of mechanical processing on the pozzolanic efficiency and the microstructure development of wheat straw ash blended cement composites. Constr. Build. Mater., 193: 481-490. doi: 10.1016/J.CONBUILDMAT.2018. 10.229.
  66. Gedefaw, A., et al. 2022. Experimental investigation on the effects of coffee husk ash as partial replacement of cement on concrete properties. Adv. Mater. Sci. Eng. doi: 10.1155/2022/417 5460.
  67. Mazlan, S.A., et al.2021. Effectiveness of coffee husk ash and coconut fiber in improving peat properties. Physics Chem. Earth Parts A/B/C. 130: 103361. doi: 10.1016/J.PCE.2023.103361.
  68. Lima, F.S., T.C.F. Gomes and J.C.B. Moraes. 2023. Effect of coffee husk ash as alkaline activator in one-part alkali-activated binder. Constr. Build. Mater., 362: 129799. doi: 10.1016/J.CONBUIL DMAT.2022.129799.
  69. Bereiter, B., et al. 2015. Revision of the EPICA Dome C CO2record from 800 to 600-kyr before present. Geophys. Res. Lett., 42(2): 542–549. doi: 10.100 2/2014GL061957.
  70. Samset, B.H., J.S. Fuglestvedt and M.T. Lund. 2020. Delayed emergence of a global temperature response after emission mitigation. Nat. Commun., 11: 3261. doi: 10.1038/S41467-020-17001-1.
  71. Mitchell, J.F.B., et al. 2000. The effect of stabilising atmospheric carbon dioxide concentrations on global and regional climate change. Geophys. Res. Lett., 27(18): 2977-2980. doi: 10.1029/1999GL011 213.
  72. Ritchie, H., P. Rosado and M. Roser. 2023. CO2and greenhouse gas emissions. Our World in Data.
  73. Ritchie, H. and M. Roser. 2020. CO2emissions. Our World in Data.
  74. Abebaw, G., B. Bewket and S. Getahun. 2021. Experimental investigation on effect of partial replacement of cement with bamboo leaf ash on concrete property. Adv. Civil Eng. doi: 10.1155/2021/6468444.
  75. Ishfaq, M., A. Gul and M.H. Naseer. 2021. Effect of heat treatment on the chemical and microstructural properties of wheat straw ash (WSA). J. Eng. Res. Reports. 1: 99–108. doi: 10.9734/JERR/202 1/V20I1217423.
  76. Abd Elmoaty, A.E.M. 2013. Mechanical properties and corrosion resistance of concrete modified with granite dust. Constr. Build. Mater., 47: 743–752. doi: 10.1016/J.CONBUILDMAT.2013.05. 054.
  77. Aliabdo, A.A., A.E.M. Abd Elmoaty and E.M. Auda 2014. Re-use of waste marble dust in the production of cement and concrete. Constr. Build. Mater., 50: 28–41. doi: 10.1016/j.conbuildmat.2013.0 9.005.
  78. Nežerka, V., et al. 2018. Micromechanical characterization and modeling of cement pastes containing waste marble powder. J. Clean. Prod., 195: 1081-1090. doi: 10.1016/j.jclepro.2018.05.284.
  79. Siddique, S., J. G. Jang and T. Gupta. 2021. Developing marble slurry as supplementary cementitious material through calcination: Strength and microstructure study. Constr. Build. Mater., 293. doi: 10.1016/j.conbuildmat.2021.123474.
  80. Danish, A., et al. 2021. Reusing marble and granite dust as cement replacement in cementitious composites: A review on sustainability benefits and critical challenges. J. Build. Eng., 44. doi: 10.1016/j.jobe.2021.102600.
  81. Demissew, A., F. Fufa and S. Assefa. 2019. Partial replacement of cement by coffee husk ash for C-25 concrete production. J. Civil Eng. Sci. Tech., 10(1): 12–21. doi: 10.33736/JCEST.1433.2019.
  82. Bheel, N., et al. 2021. Mechanical performance of concrete incorporating wheat straw ash as partial replacement of cement. J. Build. Pathol. Rehabilitation. 6: 1. doi: 10.1007/s41024-020-00099-7.
  83. Shukla, A., N. Gupta and A. Gupta. 2020. Development of green concrete using waste marble dust. Mater. Today Proceedings. 26(2): 2590-2594. doi: 10.1016/j.matpr.2020.02.548.
  84. Talah, A., F. Kharchi and R. Chaid. 2015. Influence of marble powder on high performance concrete behaviour. Procedia Eng., 114: 685–690. doi: 10.1016/j.proeng.2015.08.010.
  85. Singh, S., et al. 2016. Performance of sustainable concrete containing granite cutting waste. J. Clean Prod., 119: 86–98. doi: 10.1016/j.jclepro.2016. 02.008.
  86. Sadek, D.M., M.M. El-Attar and H.A. Ali. 2016. Reusing of marble and granite powders in self-compacting concrete for sustainable development. J Clean Prod., 121: 19–32. doi: 10.1016/j.jclepro. 2016.02.044.
  87. Cao, Y., et al. 2022. Hydrogen production using solar energy and injection into a solid oxide fuel cell for CO2emission reduction: Thermoeconomic assessment and tri-objective optimization. Sustain. Energy Tech. Assess., 50: 101767. doi: 10.1016/J.SETA.2021.101767.
  88. Ramos, T., et al. 2013. Granitic quarry sludge waste in mortar: Effect on strength and durability. Constr. Build. Mater., 47: 1001–1009. doi: 10.1016/J.CO NBUILDMAT.2013.05.098.