Remediation of Antimony from Aqueous Solutions by Adsorption Technique: Isothermal, Kinetic and Thermodynamic Studies

IJEP 43(14): 1316-1325 : Vol. 43 Issue. 14 (Conference 2023)

Seroor Atallah Khaleefa Ali1*, Zainab AL-Kaabi1, Mustafa Najdat Kasim2, Mohammed Nsaif Abbas1 and Thekra Atta Ibrahim3

1. Mustansiriyah University, Environmental Engineering Department, College of Engineering, Baghdad, Iraq
2. Northern Technical University, Civil Techniques Department, Kirkuk Technical Institute, Kirkuk, Iraq
3. Diyala University, Department of Biology, College of Education for Pure Science, Diyala, Iraq

Abstract

Banana peels are natural, efficient, eco-friendly and cost-effective for removal of antimony from water. Adsorption efficiency can be determined by using different adsorption isotherm models, such as Langmuir, Freundlich and Temkin. In this investigation, the above isotherm models, besides kinetic and thermodynamics models, are employed to explain the performance of utilizing banana peels for antimony remediation from polluted solutions. The performance can be detected by matching the correlation coefficients of the linear mathematical relations for all models. Using banana peels, 83.47% antimony ions removal percentage was achieved. Antimony removal exponentially rises with rising pH, contact time, agitation speed, temperature and adsorbent’s media dose; however, it decreases with rising the initial concentration of the metal. The results show that the model of Langmuir gives an R2 of 0.9999, while other models give less correlation coefficient. Furthermore, the kinetic part shows that the adsorption matches the pseudo-second-order kinetic model by a correlation coefficient very close to 1. Finally, according to the thermodynamics study, the adsorption was spontaneous, endothermic enthalpy and of low entropy change.

Keywords

Antimony, Adsorption, Isotherm, Kinetics, Thermodynamics, Banana peels

References

  1. Al-Ali, S.I.S., Z.N. Abudi and Abbas M.N. 2023. Modelling and simulation for the use of natural waste to purified contaminated heavy metals. J. Niger. Soc. Phys. Sci., 5(1): 1-9. DOI: 10.46481/jnsps.2023.1143.
  2. Abd Al-Latif, F.S., T.A. Ibrahim and M. N. Abbas. 2023. Revealing potential histological changes of deltamethrin exposure on testicular tissue in Albino rabbits (Oryctolagus cuniculus). Advancements Life Sci., 10(4): 619-626. DOI: 10.62940/als.v10i4.2323.
  3. Abbas, M.N. and F.S. Abbas. 2013. The predisposition of Iraqi rice husk to remove heavy metals from aqueous solutions and capitalized from waste residue. Res. J. Appl. Sci. Eng. Tech., 6(22): 4237-4246.
  4. Abbas, M.N. and F.S. Abbas. 2013. Iraqi rice husk potency to eliminate toxic metals from aqueous solutions and utilization from process residues. Adv. Env. Biol., 7(2): 308-319.
  5. Abbas, M.N. and F.S. Abbas. 2013. The feasibility of rice husk to remove minerals from water by adsorption and avail from wastes. WSEAS Trans. Env. Develop., 9(4): 301-313.
  6. Abbas, M.N. and H. Alalwan. 2019. Catalytic oxidative and adsorptive desulphurization of heavy naphtha fraction. Korean J. Chem. Eng., 57(2): 283-288. DOI: 10.9713/kcer.2019.57.2.283.
  7. Abbas, M.N., S.T. Ali and R. S. Abbas. 2020. Rice husks as a biosorbent agent for Pb+2ions from contaminated aqueous solutions: A review. Biochem. Cell. Arch., 20(1): 1813-1820. DOI: 10.35 124/bca.2020.20.1.1813.
  8. Ali, S.A.K., et al. 2020. Purification of aqueous solutions from toxic metals using laboratory batch mode adsorption unit antimony (V) ions as a case study. J. Green Eng., 10(11): 10662-10680.
  9. Hashem, N.S., et al. 2021. Heavy metals evaluation by atomic spectroscopy for different parts of water hyacinth (Eichhornia crassipes) plants: Banks of Tigris river and Al-Zuhairat village sites. Biochem. Cell. Arch., 21(2): 3813-3819.
  10. Abbas, F.S. and W.S. Abdulkareem and M.N. Abbas. 2022. Strength development of plain concrete slabs by the sustainability potential of lead-loaded rice husk (LLRH). J. Appl. Eng. Sci., 20(1): 160-167. DOI: 10.5937/jaes0-32253.
  11. Abbas, M.N. and T.H. Nussrat. 2020. A statistical analysis of experimental data for adsorption process of cadmium by watermelon rinds in continuous packed bed column. Int. J. Innov. Creativity Change. 13(3): 124-138.
  12. Abdullah, W.R., et al. 2023. Study of chemical and physical parameters affected on purification of water from inorganic contaminants. Period. Eng. Nat. Sci., 11(2): 166-175. DOI: 10.21533/pen.v 11i2.3508.
  13. Alhamd, S.J., et al. 2024a. Treatment of oil refinery wastewater polluted by heavy metal ions via adsorption technique using non-valuable media: Cadmium ions and buckthorn leaves as a study case. Karbala Int. J. Modern Sci., 10(1): 1-18. DOI: 10.33640/2405-609X.3334.
  14. Ali, G.A.A. and M.N. Abbas 2020. Atomic spectroscopy technique employed to detect the heavy metals from Iraqi waterbodies using natural bio-filter (Eichhornia crassipes): Thera Dejla as a case study. Sys. Rev. Pharm., 11(9): 264-271. DOI: 10.31838/srp.2020.9.43.
  15. Alalwan, H.A., et al. 2020. Uptake of cyanide compounds from aqueous solutions by lemon peel with utilising the residue absorbents as rodenticide. Indian Chem. Eng., 62(1): 40-51. DOI: 10.1080/00194506.2019.1623091.
  16. Rajaa, N., et al. 2023. The improvement of concrete strength through the addition of sustainable materials (agro-waste loaded with copper ions). IOP Conf. Series Earth Env. Sci., 1232: 012038. DOI: 10.1088/1755-1315/1232/1/012038.
  17. Ghulam, N.A., M.N. Abbas and D.E. Sachit. 2020. Preparation of synthetic alumina from aluminium foil waste and investigation of its performance in the removal of RG-19 dye from its aqueous solution. Indian Chem. Eng., 62(3): 301-313. DOI: 10.1080/00194506.2019.1677512.
  18. Hasan, M.B., I.M. Al-Tameemi and M.N. Abbas. 2021. Orange peels as a sustainable material for treating water polluted with antimony. J. Ecol. Eng., 22(2): 25-35. DOI: 10.12911/22998993/130632.
  19. Abbas, M.N., et al. 2019a. Phenol biosorption from polluted aqueous solutions by Ulva lactuca alga using batch mode unit. J. Ecol. Eng., 20(6): 225–235. DOI: 10.12911/22998993/109460.
  20. Abbas, M.N. and S.A. Ibrahim. 2020. Catalytic and thermal desulphurization of light naphtha fraction. J. King Saud University Eng. Sci., 32(4): 229-235. DOI: 10.1016/j.jksues.2019.08.001.
  21. Alhamd, S.J., et al. 2024b. Removal of phenol from oilfield produced water using non-conventional adsorbent medium by an eco-friendly approach. Karbala Int. J. Modern Sci., 10(2): 191-210. DOI: 10.33640/2405-609X.3350.
  22. Abbas, M.N., A.T. Al-Madhhachi and S.A. Esmael. 2019b. Quantifying soil erodibility parameters due to wastewater chemicals. Int. J. Hydrol. Sci. Tech., 9(5): 550-568. DOI: 10.1504/IJHST.2019.100168 84.
  23. Abbas, M.N. 2015. Phosphorus removal from wastewater using rice husk and subsequent utilization of the waste residue. Desalin. Water Treat., 55(4): 970-977. DOI: 10.1080/19443994.2014.9 22494.
  24. Alalwan, H.A., et al. 2018. Adsorption of thallium ion (Tl+3) from aqueous solutions by rice husk in a fixed-bed column: Experiment and prediction of breakthrough curves. Env. Tech. Innov., 12: 1-13. DOI: 10.1016/j.eti.2018.07.001.
  25. Abbas, M.N. and F.S. Abbas. 2014. Application of rice husk to remove humic acid from aqueous solutions and profiting from waste leftover. WSEAS Trans. Biol. Biomed., 11(9): 62-69.
  26. Abd Ali, I.K., et al. 2018. Study of the effect of pesticide 2,4-D on the histological structure of the lungs in the albino mice (Mus musculus). J. Pharm. Sci. Res., 10(6): 1418-1421.
  27. Alalwan, H.A., et al. 2021. Adsorption of methyl green stain from aqueous solutions using non-conventional adsorbent media: Isothermal kinetic and thermodynamic studies. Bioresour. Tech. Rep., 14: 100680. DOI: 10.1016/j.biteb.2021.100680.
  28. Ibrahim, S.A., et al. 2021. Optimization of adsorption unit parameter of hardness remediation from wastewater using low-cost media. Innov. Infrastruc. Sol., 6(4): 200-222. DOI: 10.1007/s41 062-021-00564-3.
  29. Al-Hermizy, S.M.M., et al. 2022. Elimination of zinc ions (Zn+2) from synthetic wastewater using lemon peels. Asian J. Water Env. Poll., 19(5): 79-85. DOI: 10.3233/AJW220073.
  30. Khaleel, L.R., S.M. Al-Hermizy and M.N. Abbas. 2022. Statistical indicators for evaluating the effect of heavy metals on Samaraa drug industry water exposed to the sun and freezing. Trop. J. Nat. Prod. Res., 6(12): 1969-1974. DOI: 10.26538/tjnpr/v6i12.12.
  31. Abbas, M.N., et al. 2021a. Chemical removal of cobalt and lithium in contaminated soils using promoted white eggshells with different catalysts. S. African J. Chem. Eng., 35: 23-32. DOI: 10.1016/j.sajce.2020.11.002.
  32. Ali, G.A.A., S.A. Ibrahim and M.N. Abbas. 2021. Catalytic adsorptive of nickel metal from Iraqi crude oil using non-conventional catalysts. Innov. Infra-struc. Sol., DOI: 10.1007/s41062-020-003 68-x.
  33. Maddodi, S.A., et al. 2020. Isotherm and computational fluid dynamics analysis of nickel ion adsorption from aqueous solution using activated carbon. S. African J. Chem. Eng., 32: 5-12. DOI: 10.1 016/j.sajce.2020.01.002.
  34. Alwan, E.K., et al. 2021. Synthesis of cobalt iron oxide doped by chromium using sol-gel method and application to remove Malachite Green dye. NeuroQuant., 19(8): 32-41. DOI: 10.14704/nq.20 21.19.8.NQ21110.
  35. Abdulkareem, W.S., et al. 2023. Management of agro-waste by using as an additive to concrete and its role in reducing cost production: Impact of compressive strength as a case Sstudy. Int. J. Technical Physical Prob. Eng., 15(1): 62-67.
  36. Ibrahim, T.A., et al. 2020a. Study the effect of ribavirin drug on the histological structure of the testes in albino mice (Mus musculus). J. Global Pharma Tech., 12: 142-146.
  37. Ibrahim, T.A., et al. 2020b. Teratogenic effect of carbamazepine drug on the histological structure of testes in the albino mouse (Mus musculus). Indian J. Med. Forensic Med. Toxicol., 14(4): 1829-1834. DOI: 10.37506/ijfmt.v14i4.11809.
  38. Abd Ali, I.K., et al. 2024. Study of the teratogenic effects of antimony on liver in the adult rabbit (Oryctolagus cuniculus). Advancements Life Sci., 11(2): 462-469. DOI: 10.62940/als.v11i2.2773.
  39. Alminshid, A.H., et al. 2021. Aldol condensation reaction of acetone on MgO nanoparticles surface: An in-situ drift investigation. Mol. Catal., 501: 111333. DOI: 10.1016/j.mcat.2020.111333.
  40. Hamdi, G.M., M.N. Abbas and S.A.K. Ali. 2024. Bioethanol production from agricultural waste: A review. J. Eng. Sustain. Develop., 28(2): 233-252. DOI: 10.31272/jeasd.28.2.7.
  41. Abbas, M.N., et al. 2021b. Eggshells as a sustainable source for acetone production. J. King Saud University Eng. Sci., 34(6): 381-387. DOI: 10.1016/j.jksues.2021.01.005.
  42. Hameed, W.A. and M.N. Abbas. 2024. Dyes adsorption from contaminated aqueous solution using silicon dioxide nanoparticles prepared from extracted tree leaves. J. Ecol. Eng., 25(7): 41-57. DOI: 10.12911/22998993/187921.
  43. Shadhan, Z.J., S.J. Alhamd and M.N. Abbas. 2024. Recovery of vanadium element from wastewater of petroleum refineries using effective adsorbent: Mathematical approach via isothermal, kinetics and thermodynamic simulation. Al-Qadisiyah J. Eng. Sci., DOI: 10.30772/qjes.2024.145441.1069. (In press).
  44. Alhamd, S.J.K., et al. 2024. Efficient removal of heavy metals from crude oil using high surface area adsorbent media: Vanadium as a case study. Tikrit J. Eng. Sci., 10(1): 1-9. DOI: 10.25130/tjes.31.2.1.
  45. Ali, S.A.K., et al. 2024. Synthesis of nano-silica particles using Eucalyptus globulus leaf extract and their innovative application as an adsorbent for Malachite Green dye. Russian J. Appl. Chem., 97(1): 75–87. DOI: 10.1134/S1070427224010 099.
  46. Ali, S.T., et al. 2020. A statistical study to determine the factors of vitamin D deficiency in men: The city of Baghdad as a model. Indian J. Med. Forensic Med Toxicol., 14: 691-696. DOI: 10.3750 6/ijfmt.v14i1.132.