Evaluation of heavy metals and ecological risk factors in agricultural industrial (Sago) soil of Attur, Salem District, South India

IJEP 43(6): 512-523 : Vol. 43 Issue. 6 (June 2023)

Ramesh Kumar K.1,2, C. Manivannan3 and Anbazhagan V.1*

1. Vinayaka Mission’s Research Foundation (Deemed to be University), Vinayaka Mission’s Kirupananda Variyar Arts and Science College, Salem, Tamil Nadu – 636 308, India
2. District Institute of Education and Training, Uthamacholopuram, Salem, Tamil Nadu – 636 010, India
3. Bannari Amman Institute of Technology, Photonics Laboratory, Department of Chemistry, Erode, Tamil Nadu – 638 401, India

Abstract

Environmental pollution is one of the most important current concerns for human daily life. The present study aims to evaluate the heavy metals and ecological risk factors of agricultural soil profile in Attur taluk, Tamil Nadu, India using geochemical methods. Attur region has become a famous place for tapioca based industries (sago industries). These industries release large volumes of heavy metal wastes into the adjoining agricultural lands. In this study 18 soil samples were collected for physico-chemical and heavy metal analysis to assess the ecological risk estimation. The level of pollution in the study area was assessed using ecological risk factors, such as contamination factor (CF), pollution load index (PLI) and geo-accumulation index (Igeo). The results indicated that study areas’ samples numbered 4 (Karumantur), 13 (Valayampathy) and 17 (Karadipatti) are contaminated which might be due to the continuous release of heavy metals of arsenic and copper containing sago industrial effluent into the soil. Soil management is needed for the study area to maintain sustainable environment.

Keywords

Soil, agricultural land, heavy metals, ecological risk factors, Attur, Sago industries, South India

References

  1. Khademi, H., et al. 2019. Environmental impact assessment of industrial activities on heavy metals distribution in street dust and soil. Chemosphere. 217:695-705. DOI:10.1016/j.chemosphere. 2018.11.045.
  2. Chen, H., et al. 2022. Potential driving forces and probabilistic health risks of heavy metal accumulation in the soils from an e-waste area, southeast China. Chemosphere. 289:133182.
  3. Li, Y., et al. 2020. Heavy metal contamination and health risks of indoor dust around Xinqiao mining area, Tongling, China. Human Ecol. Risk Assess. Int. J., 26(1):46-56. DOI:10.1080/7039.2018. 1503930.
  4. Alloway, B.J. 1990. Heavy metals in soils. Blackie and Son Ltd., Glasgow. pp 100-124.
  5. Khan, S., et al. 2008. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Env. Poll., 152 (3):686-692. DOI:10.1016. jenvpol. 2007.06.056.
  6. Duffus, J.H. 2002. Heavy metals a meaningless term? IUPAC technical report. Pure Appl. Chem., 74(5):793-807.DOI:10.1351/pac 200274050 793.
  7. Wuana, R.A. and F.E. Okieimen. 2011. Heavy metals in contaminated soils : A review of sources, chemistry, risks and best available strategies for remediation. Int Scholarly Res. Notices. Ecol., DOI:10.5402/2011/402647.
  8. Sardar, K., et al. 2013. Heavy metals contamination and what are the impacts on living organisms. Greener J. Env. Manage. Public Safety. 2(4):172-179.
  9. Shen, Z.G., et al. 2002. Lead phytoextraction from contaminated soil with high biomass plant species. J. Env. Quality. 31(6):1893-1900. DOI: 10.2134/jeq 2002.1893.
  10. Gautam, P.K., et al. 2016. Heavy metals in the environment: Fate, transport, toxicity and remediation technologies (chapter 4). In Heavy metals : Sources, toxicity and remediation techniques. Nova Science Publishers. pp 101-130.
  11. Suciu, I., et al. 2008. Analysis of soil heavy metal pollution and pattern in Central Transylvania. Int. J. Molecular Sci., 9(4):434-453. DOI:10.3390/ijms 9040434.
  12. Holmes, P., K.A.F. James and L.S. Levy. 2009. Is low-level environmental mercury exposure of concern to human health? Sci. Total Env., 408(2):171-182. DOI:10.1016/j. scitotenv. 2009.09.043.
  13. Oancea, S., N. Toca and A. Airinei. 2005. Effects of heavy metals on plant growth and photosynthetic activity. Analele Sci. Univ., 1:107-110.
  14. Rai, P.K., et al. 2019. Heavy metals in food crops: Health risks, fate, mechanisms and management. Env. Int., 125:365-385. DOI:10.1016/j.envint.2019.01.067.
  15. Tasrina, R.C., et al. 2015. Heavy metals contamination in vegetables and its growing soil. J. Env. Anal. Chem., 2(142):2. DOI:10.4172/2380-2391.1000142.
  16. Chabukdhara, M., et al. 2016. Heavy metal contamination in vegetables grown around peri-urban and urban-industrial clusters in Ghaziabad, India. Human Ecol. Risk Assess. Int. J., 22(3):736-752. DOI:1080/10807039.2015.1105723.
  17. Tangahu, B.V., et al. 2011. A review on heavy metals (As, Pb and Hg) uptake by plants through photoremediation. Int. J. Chem. Eng., 1-32. DOI:10.1155/2011/939161.
  18. Ashraf, I., et al. 2021. Heavy metals assessment in water, soil, vegetables and their associated health risks via consumption of vegetables, district Kasur, Pakistan. SN Appl. Sci., 3(5):1-16.
  19. Proshad, R., et al. 2019. Contamination of heavy metals in agricultural soils: Ecological and health risk assessment. SF J. Nanochem. Nanotech., 2(1):1012.
  20. Mathiyazhagan, N. and D. Natarajan. 2012. Physico-chemical assessment of waste dumps of magnesite and bauxite mine in summer and rainy season. Int. J. Env. Sci., 2(4):2243-2252. DOI:10.6088/ ijes.002030107.
  21. Bahernuka, T.E. and E.B. Mubolu. 1999. Heavy metals in edible green vegetables grown along the sites of the Sinza and Msimbazi rivers in Dar es Salaam, Tanzania. Food Chem., 66(1):63-66. DOI:10.1016/S0308-8146(98)00213-1.
  22. Ramesh, F., K. Nagarajan and A.G. Portia. 2013. Comparative account of untreated and treated sago effluent analysis by investigating different physical and chemical parameters. Int. J. Pure Appl. Sci. Tech., 17(2):17-20.
  23. Jackson, M.L., R.H. Miller and R.E. Forkiln. 1973. Soil chemical analysis (2nd Indian Rep.). Prantic-Hall of India Pvt. Ltd., New Delhi.
  24. Mathew, M., et al. 2003. Speciation of heavy metals in bed sediments of wetlands in urban Coimbatore, India. Bull. Env. Contam. Toxicol., 70(4):800-808.
  25. Mathiyazhagan, N. and D. Natarajan. 2011. Assessment of physico-chemical and heavy metals from waste dumps of magnesite and bauxite mines. Elec. J. Env. Agric. Food Chem., 10(11):3076-3082.
  26. Pahlsson, A.M.B. 1989. Toxicity of heavy metals (Zn), Cu, Cd, Pb) to vascular plants. Water Air Soil Poll., 47(1):287-319. DOI:10.1007/BF00279329.
  27. Wee, O.Y., et al. 2017. Physico-chemical characteristic of sago (Metroxylon sagu) starch production wastewater effluent. Int. J. Res. Advent Tech., 5(9):4-13.
  28. Isirimah, N.O., A.A. Dickson and C.A. Igwe. 2003. Important ions in soils environment. In Introductory soil chemistry and biology for agricultural and biotechnology. Osia Int’ I Publisher Ltd. pp 34-37.
  29. Ojha, P.K. and N.K. Chaudhary. 2017. Soil quality assessment posed by industrial effluents in Banshari industrial area of Morang district, Nepal. Elisir. Poll., 106:45906-45908.
  30. Sivananda, N. 2010. Impact of treated sago industry effluent on paddy plants. Nature Env. Poll. Tech., 9(1):93-96.
  31. Nizzy, A.M. and S. Kannan. 2014. Physico-chemical properties of sago industrial effluents and their effects on seed germination. Int. J. Recent Sci. Res., 5(1):266-268.
  32. Kumar, K.R. and V. Anbazhagan. 2018. Analysis and assessment of heavy metals in soils around the industrial areas in Mettur, Tamil Nadu, India. Env. Monit. Assess., 519: 1-15.
  33. Turekian, K.K. and K.H. Wedepohl. 1961. Distribution of the elements in some major units of the earth’s crust. Geol. Soc. America Bull., 72(2):175-192.
  34. Salomons, W. and U. Forstner. 2012. Environmental management of solid waste: Dredged material and some tailings. Springer Science and Business Media.
  35. Muller, G. 1979. Heavy metals in the sediment of the rhine changes seity. Umschau Wissenschaft Technik. 79:778-783.
  36. Loska, K., et al. 1997. Use of enrichment and contamination factors together with geo-accumulation indexes to evaluate the content of Cd, Cu and Ni in the Rybnik water reservoir in Poland. Water Air Soil Poll., 93(1-4):347-365. DOI:10.1007/BF02 404766.
  37. Harter, T. 2003. Groundwater quality and groundwater pollution. Agriculture and Natural Resources (ANR) Publication 8084, University of California. DOI: 10.3733/ucanr.8084https://escholarship.org/uc/ item/0vw7400h.
  38. Srinivas, C.H., et al. 2000. Studies on groundwater quality of Hyderabad. Poll. Res., 19(2):285-289.
  39. Rao, D.R., V. Siddaiah and P.V.S. Machiraju. 2019. Soil quality assessment and its suitability for crop production. Asian J. Chem., 31(1):169-175.
  40. Rabee, A.M., Y.F. Al-Fatlawy and M. Nameer. 2011. Using pollution load index (PLI) and geo-accumulation index (Igeo) for the assessment of heavy metals pollution in Tigris river sediment in Baghdad region. Al-Nahrain J. Sci., 14(4):108-114.
  41. Muller, G. 1981. The heavy metal pollution of the sediments of Neckars and its tributary: stocktaking. Chemiker Zeitung. 105:157-164.
  42. Olubunmi, F.E. and O.E. Olorunsola. 2010. Evaluation of the status of heavy metal pollution of sediment of Agbabu bitumen deposit area, Nigeria. European J. Sci. Res., 4(3):373-382.
  43. Andrew, T.N., et al. 2018. Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils. Biol. Fertility Soils. 54:219-228.
  44. Chung, S.Y., et al. 2016. Evaluation of physico-chemical parameters in water and total heavy metals in sediments at Nakdong river basin, Korea. Env. Earth Sci., 75(1):50-75.