IJEP 43(9): 783-789 : Vol. 43 Issue. 9 (September 2023)
Priya Borah, Arpita Borah, Paramita Chakravarty and Hemen Deka*
Gauhati University, Department of Botany, Guwahati – 781 014, Assam, India
Abstract
Two bacterial candidates, namely Paenibacillus sp. HD1PAH and Bacillus cereus HD3PAH; isolated from the crude oil-contaminated soil, were used for removal of Zn, Mn and Cu in liquid culture environments. The Paenibacillus sp. HD1PAH was used for synthesis of silver nanoparticles (Ag-NPs) whereas Bacillus cereus HD3PAH was employed for removal of Zn, Mn and Cu from liquid culture media. Three treatments were employed during 7 days of experimental trials; one with Bacillus cereus HD3PAH supplemented by silver nanoparticles (Ag-NPs), whereas in the other two, Bacillus cereus HD3PAH and Ag-NPs were employed alone. The results showed maximum reduction in Zn (94.75%), Mn (91.93%) and Cu (91.7%) in Bacillus cereus HD3PAH assisted with Ag-NPs employed treatment. Significantly, the time behavioural growth pattern of bacterial cells revealed a typical diauxic growth curve in presence of Ag-NPs and heavy metals (HMs) indicating the abilities of the bacterium to overcome the stress imposed due to Ag-NPs and HMs. Moreover, results also confirmed Paenibacillus sp. HD1PAH is the suitable source for synthesis of Ag-NPs indicating a size range of 58.7-71.8 nm under DLS alongwith the UV-visible and FTIR spectrum at around 200-400 nm and 2937.347/cm, 2112.531/cm and 1655.632/cm, respectively.
Keywords
Metal contamination, Bio-removal, Silver nanoparticles, Tolerance, Liquid culture
References
- Li, C., et al. 2022. Heavy metal pollution in coastal wetlands: A systematic review of studies globally over the past three decades. J. Hazard. Mater., 424: 127312. DOI: 10.1016/j.jhazmat.2021.127 312.
- Dhal, B., et al. 2013. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J. Hazard. Mater., 250:272-291. DOI: 10.1 016/j.jhazmat.2013.01.048.
- Mishra, S., et al. 2019. Heavy metal contamination: An alarming threat to environment and human health. In Environmental biotechnology: For sustainable future. pp 103-125.
- Jaishankar, M., et al. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol., 7:60. DOI:10.2478%2Fintox-2014-0009.
- Nouha, K., R.S. Kumar and R.D. Tyagi. 2016. Heavy metals removal from wastewater using extracellular polymeric substances produced by Cloacibac-terium normanense in wastewater sludge supplemented with crude glycerol and study of extracellular polymeric substances extraction by different methods. Bioresour. Tech., 212:120-129. DOI: 10.1 016/j.biortech.2016.04.02.
- Jan, A.T., et al. 2015. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci., 16:29592-29630. DOI: 10.3390/ijms161226183.
- Rajesh, V. and N. Rajesh. 2018. Biosorption study of cadmium, lead and zinc ions onto halophilic bacteria and reduced graphene oxide. J. Env. Chem. Eng., 6:5053-5060. DOI:10.1016/j.jece.2018. 07.042.
- Dermont, G., et al. 2008. Soil washing for metal removal: A review of physical/chemical technologies and field applications. J. Hazard. Mater., 152:1-31. DOI: 10.1016/j.jhazmat.2007.10.043.
- Maila, M.P. and T.E. Cloete. 2004. Bioremediation of petroleum hydrocarbons through land farming: Are simplicity and cost-effectiveness the only advantages? Rev. Env. Sci. Biotech.,3(4):349-360. DOI: 10.1007/s11157-004-6653-z.
- Lim, M.W., E.V. Lau and P.E. Poh. 2016. A comprehensive guide of remediation technologies for oil contaminated soil- Present works and future directions. Mar. Poll. Bull.,109(1):14-45. DOI: 10.1 016/j.marpolbul.2016.04.023.
- Joutey, N.T., et al. 2013. Biodegradation: Involved micro-organisms and genetically engineered microorganisms. Biodegrad., 1: 289-320. DOI: 10. 5772/56194.
- Ke, L., et al. 2010. Effects of metals on biosorption and biodegradation of mixed polycyclic aromatic hydrocarbons by a freshwater green alga Selenas-trum capricornutum. Bioresour. Tech., 101: 6950-6961. DOI: 10.1016/j.biortech.2010.04.011.
- Patel, A.B., et al. 2020. Polycyclic aromatic hydrocarbons: Sources, toxicity and remediation approaches. Front. Microbiol., 2675. DOI: 10.3389/fmicb.2020.562813.
- Rizwan, M., et al. 2014. Eco-friendly application of nanomaterials: Nanobioremediation. J. Nanopart., DOI: 10.1155/2014/431787.
- Sohail, M. I., et al. 2019. Environmental application of nanomaterials: A promise to sustainable future. InComprehensive analytical chemistry (vol. 87, pp. 1-54). Elsevier. DOI: 10.1016/bs.coac.2019.10.002
- Decesaro, A., et al. 2017. Biosurfactants during in-situ bioremediation: Factors that influence the production and challenges in evalution. Env. Sci. Poll. Res., 24(26): 20831-20843. DOI: 10.1007/s11356-017-9778-7.
- Taheriniya, S. and Z. Behboodi. 2016. Comparing green chemical methods and chemical methods for the synthesis of titanium dioxide nanoparticles. Int. J. Pharm. Sci., 7:4927.
- Lahkar, J. and H. Deka. 2017. Isolation of polycyclic aromatic hydrocarbons (PAHs) degrading fungal candidate from oil-contaminated soil and degradation potentiality study on anthracene. Polycycl. Aromat. Compd.,37:141-147. DOI: 10.1080/10 406638.2016.1220957.
- He, S., et al. 2007. Biosynthesis of gold nanopar-ticles using the bacteria Rhodopseudomon ascapsulata. Mater. Lett., 61:3984-3987.DOI: 10.1016/j.matlet. 2007.01.018.
- Shahverdi, A.R., et al. 2007. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochem., 42: 919-923. DOI: 10.1016/j.proc bio.2007.02.005.
- Mahdieh, M., A. Zolanvari and A.S. Azimee. 2012. Green biosynthesis of silver nanoparticles by Spirulina platensis. Scientia Iranica. 19(3): 926-929. DOI: 10.1016/j.scient.2012.01.010.
- Aydin, A., H. Sipahi and M. Charehsaz. 2012. Nano-particles toxicity and their routes of exposures (pp 483-500). In Recent advances in novel drug carrier systems. Ed Ali Demir Sezer. DOI: 10.5772/51230.
- Hristozov, D. and J. Malsch. 2009. Hazards and risks of engineered nanoparticles for the environment and human health. Sustain., 1(4): 1161-1194. DOI: 10.3390/su1041161.
- Pavia, D.L., G.M. Lampman and G.S. Kriz. 2014. Infrared spectroscopy (chapter 2). In Introduction to spectroscopy (3rd edn). Thomson Learning. pp 29-72.
- Wahyono, T., et al. 2019. Fourier transform mid-infrared (FTIR) spectroscopy to identify tannin compounds in the panicle of sorghum mutant lines. Mater. Sci. Eng., 546(4): 042045. DOI: 10.1088/1757-899X/546/4/042045.
- Ahmed, R. and H. Deka. 2022. Vermicomposting of patchouli bagasse- A byproduct of essential oil industries employing Eisenia fetida. Env. Tech. Innov., 25:102232. DOI: 10.1016/j.eti.2021.102 232.
- Ghoshal, G. and M. Singh. 2022. Characterization of silver nanoparticles synthesized using fenu-greek leave extract and its antibacterial activity. Mater. Sci. Tech., 5: 22-29. DOI: 10.1016/j.mset. 2021. 10.001.
- Benzerara, K., et al. 2011. Significance, mechanisms and environmental implications of microbial biomineralization. Comptes Rendus Geosci., 343: 160-167. DOI: 10.1016/j.crte.2010.09.002.
- Modi, S., B. Pathak and M.H. Fulekar. 2015. Microbial synthesized silver nanoparticles for decolour-ization and biodegradation of azo dye compound. J. Env. Nanotech., 4(2): 37-46. DOI: 10.13074 /jent.2015.06.152149.
- Singh, S., K.C. Barick and D. Bahadur. 2011. Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens. J. Hazard. Mater.,192(3):1539-1547. DOI: 10.1016/j.jha zmat.2011.06.074.
- Ivanova, A., et al. 2020. Layer by layer coating of aminocellulose and quorum quenching acylase on silver nanoparticles synergistically eradicate bacteria and their biofilms. Adv. Funct. Mater., 30: 2001284. DOI: 10.1002/adfm.202001284.
- Todorova, K., et al. 2019. Novel composite biosor-bent from Bacillus cereus for heavy metals removal from aqueous solutions. Biotech. Equip., 33:730-738. DOI: 10.1080/13102818.2019. 1610066.
- Zhu, M., et al. 2022. Effects of environmental factors on the microbial community changes during medium-high temperature Daqu manufacturing. Food Res. Int., 110955. DOI: 10.1016/j.foodres.2022. 110955.
- Aka, R.J. and O.O. Babalola. 2017. Identification and characterization of Cr, Cd and Ni-tolerant bacteria isolated from mine tailings. Bioremediat. J., 21:1-19. DOI: 10.1080/10889868.2017.1282 933.
- Lok, C.N., et al. 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res., 5:916-924. DOI: 10.1021/pr050 4079.
- Smetana, A.B., et al. 2008. Biocidal activity of nanocrystalline silver powders and particles. Langmuir. 24:7457-7464. DOI: 10.1021/la800 091y.
- Pérez, R.M., et al. 2010. Combined strategy for the precipitation of heavy metals and biodegradation of petroleum in industrial wastewaters. J. Hazard. Mater., 182:896-902. DOI: 10.1016/j.jhaz mat.2010.07.003.
- De Kruijff, B., V. van Dam and E. Breukink. 2008. Lipid II: A central component in bacterial cell wall synthesis and a target for antibiotics. Prostaglandins Leukot. Essent. Fatty Acids. 79:117-121. DOI: 10.1016/j.plefa.2008.09.020.
- Li, X., et al. 2014. Biosorption of uranium on Bacillus sp. dwc-2: Preliminary investigation on mechanism. J. Env. Radioact., 135:6-12. DOI: 10.1016/j.jenvrad.2014.03.017.
- Nanda, M., V. Kumar and D.K. Sharma. 2019. Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water. Aquat. Toxicol.,212:1-10. DOI: 10.1016/j.aquatox.2019.04.011.
- Pandur, Ž., M. Dular and D. Stopar. 2022. Bacterial cell wall material properties determine E. coli resistance to sonolysis. Ultrason Sonochem. 105919. DOI: 10.1016/j.ultsonch.2022.105919.
- Priyadarshanee, M. and S. Das. 2021. Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. J. Env. Chem. Eng., 9:104686. DOI: 10.1016/j.jece.2020.1046 86.