Morphometric Analysis of Erramasupalle Vanka Sub-Watershed, YSR District, Andhra Pradesh, India

IJEP 43(9): 807-814 : Vol. 43 Issue. 9 (September 2023)

R. Siddi Raju1, S. Siddi Raju2 and G. Sudarsana Raju1*

1. Yogi Vemana University, Department of Geology, Kadapa – 516 005, Andhra Pradesh, India
2. Indira Gandhi National Tribal University, Department of Geology, Anuppur, Amarkantak – 484 887, Madhya Pradesh, India

Abstract

Morphometric analysis of watersheds is a primary step for understanding and planning water resources, mainly in arid and semi-arid areas. The present study is morphometric analysis of the Erramasupalle Vanka sub-watershed, YSR district, Andhra Pradesh, India. Geologically, the study area is covered by the rocks of the Cuddapah super group and Kurnool group of the Proterozoic age. In this area, rainfall is very scanty, hence, drought is very common in the summer season. The drainage was classified based on Strhler’s principle, it reveals that the sub-watershed exhibits parallel to sub-parallel drainage pattern. It is a Vth order sub-watershed and lower-order streams are mostly dominating the basin with an average drainage density of 1.99 km/km2. The sub-watershed area is spread over about 154.36 km2 and forms a part of Buggavanka river. The slope is mainly controlled by various physiographic conditions and geological erosion cycles. The elongation ratio is 0.58 representing the sub-watershed has an abundantly elongated with high to moderate elevation and steep slopes due to structural disturbances. In this study, linear, areal and relief aspects were analyzed through high-resolution satellite imagery linear self scanning sensor (LISS IV) in the ArcGIS environment. 

Keywords

Morphometric analysis, Linear self scanning sensor IV, Remore sensing, Geographical information system

References

  1. Clarke, J.I. 1996. Morphometry from maps. Essays in geomorphology. Elsevier publication Co., New York. pp 235-274.
  2. Agarwal, C.S. 1988. Study of drainage pattern through aerial data in Naugarh area of Varanasi district, U.P. J. Indian Soc. Remote Sens., 26: 169-175.
  3. Reddy, G.E., A.K. Maji and K.S. Gajbhiye. 2012. GIS for morphometric analysis of drainage basins. GIS lndia. 4(11): 9–14.
  4. Rai, P.K., et al. 2014. A GIS-based approach in drainage morphometric analysis of Kanhar river basin, India. Appl. Water Sci., 7(1):217-232. DOI: 10.1007/s13201-014-0238-y.
  5. El-Tahan, A.H.M.H. and H.E.M. El-Hanafy. 2005. Statistical analysis of morphometric and hydrologic parameters in arid regions: case study of Wadi Hadramaut. Arabian J. Geosci., 9(2). doi: 10.1007/s12517-015-2195-7.
  6. Chandrashekar, H., et al. 2015. GIS-based morphometric analysis of two reservoir catchments of Arkavati river, Ramanagaram district, Karna-taka. Aquat. Procedia. 4:1345-1353. doi: 10.101 6/j.aqpro.2015.02.175.
  7. Kim, J.B., P. Saunders and J.T. Finn. 2005. Rapid assessment of soil erosion in the Rio Lempa basin, Central America, using universal soil loss equation and geographic information systems. Env. Manage., 36(6): 872-885. doi: 10.1007/s00267-002-0065-z.
  8. Mesa, L.M. 2006. Morphometric analysis of a subtropical Andean basin (Tucuman, Argentina). Env. Geol., 50(8):1235–1242.
  9. Prasannakumar, V., H. Vijith and N. Geetha. 2011. Terrain evaluation through the assessment of geomorphometric parameters using DEM and GIS: A case study of two major sub-watersheds in Attapady, South India. Arabian J. Geosci.,
    6(4): 1141-1151. doi: 10.1007/s12517-011-0408-2. 
  10. Magesh, N.S., et al. 2013. Geographical information system-based morphometric analysis of Bharathapuzha river basin, Kerala, India. Appl. Water Sci., 3(2):467-477. doi: 10.1007/s13201-013-0095-0.
  11. Raju, R.S., G.S. Raju and M. Rajasekhar. 2020. Morphometric analysis of Mandavi river basin in Rayalaseema region of Andhra Pradesh (South India), using remote sensing and GIS. J. Indian Geophys. Union. 24(1):54-67.
  12. Sreedevi, P.D., et al. 2012. Drainage morphometry and its influence on hydrology in a semi-arid region: Using SRTM data and GIS. Env. Earth Sci., 70(2): 839-848. DOI: 10.1007/s12665-012-2172-3.
  13. Singh, P., A. Gupta and M. Singh. 2014. Hydrological inferences from watershed analysis for water resource management using remote sensing and GIS techniques. Egyptian J. Remote Sens. Space Sci., 17(2):111-121. doi: 10.1016/j.ejrs.20 14.09.003.
  14. Rastogi, R.A. and T.C. Sharma. 1976. Quantitative analysis of drainage basin characteristics. J. Soil Water Conser. India. 26(1–4):18–25.
  15. Prabu, P. and R. Baskaran. 2013. Drainage morphometry of upper Vaigai river sub-basin, Western Ghats, South India using remote sensing and GIS. J. Geol. Soc. India. 82(5):519-528. doi: 10.1007/s12594-013-0183-7.
  16. Rajasekhar, M., G.S. Raju and R.S. Raju. 2020. Morphometric analysis of the Jilledubanderu river basin, Anantapur district, andhra Pradesh, India, using geospatial technologies. Groundwater Sustain. Develop., 11:100434.
  17. Magesh, N.S., N. Chandrasekar and J.P. Soundra-nayagam. 2010. Morphometric evaluation of Papanasam and Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu, India: a GIS approach. Env. Earth Sci., 64(2):373-381. doi: 10.1007/s12665-010-0860-4.
  18. John Wilson, J.S., N. Chandrasekar and N.S. Magesh. 2012. Morphometric analysis of major sub-watersheds in Aiyar and Karai Pottanar basin, Central Tamil Nadu, India using remote sensing and GIS techniques. Bonfring Int. J. Ind. Eng. Manage. Sci., 2(special issue 1):8–15.
  19. Horton, R.E. 1945. Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Bull. Geol. Soc. America. 56:275–370.
  20. Strahler, A.N. 1964. Quantitative geomorphology of drainage basins and channel networks. In Handbook of applied hydrology. Ed Vente Chow. McGraw Hill, New York.
  21. Strahler, A.N. 1957. Quantitative analysis of watershed geomorphology. Trans. American Geophys. Union. 38:913–920.
  22. Schumm, S.A. 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bull. Geol. Soc. America. 67:597–646.
  23. Smith, K. G. 1950. Standards for grading texture of erosional topography. American J. Sci., 248(9): 655-668. doi: 10.2475/ajs.248.9.655.
  24. Schumm, S.A. 1963. Sinuosity of alluvial rivers in the Great Plains. Bull. Geol. Soc. America. 74: 1089-1100.
  25. Burrough, P.A. 1986. Principles of geographical information systems for land resources assessment. Oxford University Press.
  26. Ven, T.C. 1964. Handbook of applied hydrology. McGraw Hill Inc., New York.
  27. Singh, S. 1995. Quantitative analysis of watershed geomorphology using remote sensing techniques. Annal Arid Zone. 34(4): 243–251.
  28. Chopra, R., R. D. Dhiman and P. K. Sharma. 2005. Morphometric analysis of sub-watersheds in Gurdaspur district, Punjab using remote sensing and GIS techniques. J. Indian Soc. Remote Sens., 33(4): 531-539. doi: 10.1007/bf02990738.
  29. Vittala, S.S., S. Govindaiah and H.H. Gowda. 2004. Morphometric analysis of sub-watersheds in the pavagada area of Tumkur district, South India using remote sensing and GIS techniques. J. Indian Soc. Remote Sens., 32(4): 351-362. doi: 10.1007 /bf03030860.
  30. Moglen, G.E., E.A.B. Eltahir and R.L. Bras. 1998. On the sensitivity of drainage density to climate change. Water Resour. Res., 34(4): 855-862. doi: 10.1029/97wr02709. 
  31. Roy, P.S., R.S. Dwivedi and D. Vijayan. 2010. Remote sensing applications, RS and GIS applications area NRSC, ISRO, Hyderabad.
  32. Raju, R.S., G. Sudarsana Raju and M. Rajasekhar. 2018. Estimation of rainfall-runoff using SCS-CN techniques for Mandavi basin in YSR Kadapa district of Andhra Pradesh, India. Hydrospat. Analysis. 2(1):1-15. doi: 10.21523/gcj3.