IJEP 44(12): 1089-1096 : Vol. 44 Issue. 12 (December 2024)
Harkrishan Kamboj1, Jitender K. Bhardwaj2*, Jyoti Rani3, Suresh Kumar4 and Sanjay Kumar5
1. Chaudhary Devi Lal University, Department of Zoology, Sirsa – 125 055, Haryana, India
2. Kurukshetra University, Department of Zoology, Kurukshetra -136 119, Haryana, India
3. Chaudhary Devi Lal University, Department of Botany, Sirsa – 125 055, Haryana, India
4. Chaudhary Devi Lal University, Department of Chemistry, Sirsa – 125 055, Haryana, India
5. Chaudhary Ranbir Singh University, Department of Zoology, Jind -126 102, Haryana, India
Abstract
Most pesticides utilized in agriculture find their way and enter nearby aquatic ecosystems, posing adverse effects on exposed aquatic life. Imidacloprid is a neonicotinoid pesticide, eminent for its neurotoxic properties and is employed widely to combat various insect pests all around the world. It also exerts detrimental impacts on non-target species. The current work was designed to investigate the potential hazards of pesticide imidacloprid, including genotoxicity (DNA damage in blood cells) and histopathological alterations in the intestines of freshwater fish, Cyprinus carpio. For this, the fingerling stage of C. carpio was exposed to sub-lethal concentrations of imidacloprid (7.8 ppm, 15.6 ppm and 23.4 ppm) alongwith control for 30 days. The results revealed a significant (p<0.05) high DNA damage, as indicated by the comet test, in the erythrocytes of exposed fish as compared to the control group. Likewise, the findings also clarified that imidacloprid exposure induces significant histopathological alterations, including inflammation, hemorrhage, edema, atrophy, necrosis and degenerated muscle and mucosa, in the intestinal tissue of exposed fish. Our findings show the destructive impact of imidacloprid on cellular structure, leading to DNA damage and histopathological alterations that ultimately indirectly destroy the health of aquatic and terrestrial animals, including humans.
Keywords
Imidacloprid, DNA damage, Histopathology, Intestine, Cyprinus carpio
References
- Khan, N., S.T. Hussain and A. Saboor. 2013. Physico-chemical investigation of the drinking water sources from Mardan, Khyber Pakhtunkhwa, Pakistan. Int. J. Phys., 8(33): 1661-1671. DOI: 10.5897/IJPS2013.3999.
- Al-Mamun, A. 2017. Pesticide degradations, residues and environmental concerns. In Pesticide residue in foods. Ed M. Khan and M. Rahman. Springer International Publishing.
- Dawood, M.A.O., et al. 2020. The impact of menthol essential oil against inflammation, immune suppression and histopathological alterations induced by chlorpyrifos in Nile tilapia. Fish Shellfish Immunol. 102: 316-325.
- Alrumman, S.A., A.F. El-Kott and M.A. Kehsk. 2016. Water pollution: Source and treatment. American J. Env. Eng., 6(3): 88-98.
- Leather, S.R. 2018. Ecological armageddon- More evidence for the drastic decline in insect numbers. Ann. Appl. Biol., 172(1): 1-3. DOI: 10.1111/aab. 12410.
- Nakanishi, K.H., H. Yokomizo and T.I. Hayashi. 2018. Were the sharp declines of dragonfly populations in the 1990s in Japan caused by fipronil and imidacloprid? An analysis of Hill’s causality for the case of Sympetrum frequens. Env. Sci. Poll. Cont. Ser., 25(35): 35352-35364.
- Rico, A., et al. 2022. Ecological risk assessment of pesticides in urban streams of the Brazilian Amazon. Chemosphere. 291: 132821.
- Haseena, M., et al. 2017. Water pollution and human health. J. Env. Risk Assess. Remediat., 1(3): 16-19. DOI: 10.4066/2529-8046.100020.
- Harkrishan, P.S., A.K. Tyor and J.K. Bhardwaj. 2020. Effect of imidacloprid on histopathological alterations of brain, gills and eyes in hatchling carp (Cyprinus carpio L.). Toxicol. Int., 27: 70-78. DOI: 10.18311/ti/2020/v27i1&2/25386.
- Englert, D., et al. 2017. Does waterborne exposure explain effects caused by neonicotinoid-contaminated plant material in aquatic systems? Env. Sci. Tech., 51(10): 5793-5802. DOI: 10.1021/acs.est. 7b00827.
- Vieira, C.E.D., et al.. 2018. DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. Chemosphere. 195: 125–134. DOI: 10.10 16/j.chemosphere.2017.12.077.
- Gunal, A.C., et al. 2020. Sub-lethal effects of imidacloprid on Nile tilapia (Oreochromis niloticus). Water Air Soil Poll., 231: 4. DOI: 10.1007/s11270-019-4366-8.
- Hladik, M.L., R.M. Anson and D. Goulson. 2018. Environmental risks and challenges associated with neonicotinoid insecticides. Env. Sci. Tech., 52(6): 3329-3335. DOI: 10.1021/acs.est.7b06388.
- Lewis, K.A., et al. 2016. An international database for pesticide risk assessments and management. Human Ecol. Risk Assess. Int. J., 22: 1050–1064.
- Goulson, D. 2013. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol.,50: 977-987. DOI: 10.1111/1365-2664.12 111.
- Tomizawa, M. and J.E. Casida. 2005. Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol., 45: 247-268. DOI: 10.1146/annurev.pharmtox.45.120403. 095930.
- Codling, G., et al . Concentrations of neonicotinoid insecticides in honey, pollen and honey bees (Apis mellifera L.) in central Saskatchewan, Canada. Chemosphere. 144: 2321-2328.
- Huang, A., et al. 2021. The toxicity and toxicoki-netics of imidacloprid and a bioactive metabolite to two aquatic arthropod species. Aquat. Toxicol., 235: 105837.
- Mason, R. 2013. Immune suppression by neonico-tinoid insecticides at the root of global wildlife declines. J. Env. Toxicol., 1: 3-12. DOI: 10.7178/je it.1.
- Berheim, E.H., et al. 2019. Effects of neonicotinoid insecticides on physiology and reproductive characteristics of captive female and fawn white-tailed deer. Sci. Rep., 9: 4534. DOI: 10.1038/s41598-019-40994-9.
- Tisler, T., et al. 2009. Hazard identification of imidacloprid to aquatic environment. Chemosphere. 76: 907–914. DOI: 10.1016/j.chemosphere.200 9.05.002.
- Morrissey, C.A., et al. 2015. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Env. Int., 74: 291-303. DOI: 10.1016/j.envint.2014.10.024.
- Thunnissen, N.W., et al. 2020. Ecological risks of imidacloprid to aquatic species in the Netherlands: Measured and estimated concentrations compared to species sensitivity distributions. Chemosphere. 254: 126604.
- Bhardwaj, J.K., H. Kamboj and A.K. Tyor. 2022. The toxicity of imidacloprid on early embryonic stages and growth rate of hatchlings of common carp, Cyprinus carpio. Toxicol. Int., 29: 105-115. DOI: 10.18311/ti/2022/v29i1/28317.
- Tyor, A.K. and Harkrishan. 2016. Effects of imida-cloprid on viability and hatchability of embryos of the common carp (Cyprinus carpio L.). Int. J. Fish. Aquat., 4: 385-389.
- Bhardwaj, J.K., Harkrishan and A.K. Tyor. 2020. Imidacloprid induced alterations in behavioural and locomotory activity of fingerlings of common carp, Cyprinus carpio. Toxicol. Int., 27: 158-167. DOI: 10.18311/ti/2020/v27i3&4/25707.
- Bhardwaj, J.K., Harkrishan and A.K. Tyor. 2020. Sublethal effects of imidacloprid on haematological and biochemical profile of freshwater fish, Cyprinus carpio. J. Adv. Zool., 41: 75-88.
- Singh, N.P., et al. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res., 175: 184-191. DOI: 10.1016/0014-4827(88)90265-0.
- Klaude, M., et al.1996. The comet assay: Mechanisms and technical considerations. Mutat. Res., 363: 89-96. DOI: 10.1016/0921-8777(95)00063-1.
- Pearse, A.G.E. 1938. Histochemistry: Theoretical and applied. Churchill, London.
- Lee, R.F. and S. Steinert. 2003. Use of single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutat. Res., 544: 43-64. DOI: 10.1016/s1383-5742(03)00017-6.
- Alvim, T.T. and C.B.D.R. Martinez. 2019. Genotoxic and oxidative damage in the freshwater teleost Prochilodus lineatus exposed to the insecticides lambda-cyhalothrin and imidacloprid alone and in combination. Mutat. Res. Genet. Toxicol. Env. Mutagen., 842: 85-93. DOI: 10.1016/j.mrgentox.201 8.11.011.
- Iturburu, F.G., et al. 2018. Imidacloprid causes DNA damage in fish: Clastogenesis as a mechanism of genotoxicity. Bull. Env. Contam. Toxicol., 100: 760–764. DOI: 10.1007/s00128-018-2338-0.
- Paravani, E., et al. 2019. Cypermethrin induction of DNA damage and oxidative stress in zebrafish gill cells. Ecotoxicol. Env. Saf., 173: 1-7. DOI: 10.1 016/j.ecoenv.2019.02.004.
- Zhang, T., et al. 2020. Effects of acute ammonia toxicity on oxidative stress, DNA damage and apoptosis in digestive gland and gill of Asian clam (Corbicula fluminea). Fish Shellfish Immunol., 99: 514-525. DOI: 10.1016/j.fsi.2020.02.046.
- Saxena, K.B., et al. 2005. Cytoplasmic-nuclear male-sterility system derived from a cross between Cajanus cajanifolius and Cajanus cajan. Euphytica. 145: 289–294. DOI: 10.1007/s10681-005-1647-7.
- Zhang, F.G., et al. 2017. Uptake, distribution in different tissues and genotoxicity of imidacloprid in the freshwater fish Australoheros facetus. Env. Toxicol. Chem., 36: 699-708. DOI: 10.1002/etc.35 74.
- Lushchak, V.I. 2011. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol., 101: 13-30.
- Bolognesi, C. and S. Cirillo. 2014. Genotoxicity biomarkers in aquatic bio-indicators. Curr. Zool., 60: 273-284. DOI: 10.1093/czoolo/60.2.273.
- El-Garawani, I.M., et al. 2021. The role of ascorbic acid combined exposure on imidacloprid induced oxidative stress and genotoxicity in Nile tilapia. Sci. Rep., 11: 14716. DOI: 10.1038/s41598-021-940 20-y.
- Guilherme, S., et al. 2012. Differential genotoxicity of roundup formulation and its constituents in blood cells of fish (Anguilla anguilla): Considerations on chemical interactions and DNA damaging mechanisms. Ecotoxicol., 21: 1381-1390. DOI: 10.1007/s10646-012-0892-5.
- Abdel-Latif, H.M.R., et al. 2020. Dietary oregano essential oil improved the growth performance via enhancing the intestinal morphometry and hepato-renal functions of common carp (Cyprinus carpio L.) fingerlings. Aquac., 526: 735432. DOI: 10.101 6/j.aquaculture.2020.735432.
- Agamy, E. 2013. Impact of laboratory exposure to light Arabian crude oil, dispersed oil and dispersant on the gills of the juvenile brown spotted grouper (Epinephelus chlorostigma): A histopathological study. Mar. Env. Res., 86: 46-55. DOI: 10.1016/j.marenvres.2013.02.010.
- Abd, A., et al. 2020. Ecotoxicology and environmental safety impact of pyrethroids and organochlorine pesticides residue on IGF-1 and CYP1A genes expression and muscle protein patterns of cultured Mugil capito. Ecotoxicol. Env. Saf., 188: 109876. DOI: 10.1016/j.ecoenv.2019.109876.
- Ansoar-Rodriguez, Y., et al. 2016. Liver alterations in Oreochromis niloticus (Pisces) induced by insecticide imidacloprid histopathology and heat shock protein in-situ localization. J. Env. Sci. Health B. 51: 881–887. DOI: 10.1080/03601234.2016.124 0559.
- Patel, B., A. Upadhyay and P.H. Parikh. 2016. Histological changes in the tissues of Oreochromis mossambicus and Labeo rohita on exposure to imidacloprid and curzate. Int. J. Res. Appl. Nat. Soc. Sci., 4(5): 149-160.
- Qadir, S. and F. Iqbal. 2016. Effect of sub-lethal concentration of imidacloprid on the histology of heart, liver and kidney in Labeo rohita. Pakistan J. Pharm. Sci., 29: 2033–2038.
- Ozdemira, S., S. Altunb and H. Arslanc. 2018. Imidacloprid exposure cause the histopathological changes, activation of TNF-a, iNOS, 8-OHdG bio-markers and alteration of caspase 3, iNOS, CYP1A, MT1 gene expression levels in common carp (Cypri-nus carpio L.). Toxicol. Rep., 5: 125–133. DOI: 10.1016/j.toxrep.2017.12.019.
- Rahman, M.Z., et al. 2002. Effect of diazinon 60EC on Anabus testudineus, Channa punctatus and Barbades gomonotus. Naga ICLARM Quarterly. 25(2): 8-12.
- Das, B.K. and S.C. Mukerjee. 2003. Toxicity of cypermethrin in Labeo rohita fingerlings: Biochemical, enzymatic and haematological consequences. Comp. Biochem. Physiol., 134: 109-121. DOI: 10.1 016/s1532-0456(02)00219-3.
- Luo, T., X. Wang and Y. Jin. 2021. Low concentrations of imidacloprid exposure induced gut toxicity in adult zebrafish (Danio rerio). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., 241: 108972. DOI: 10.1016/j.cbpc.2020.108972.
- Rohani, M.F. 2023. Pesticides toxicity in fish: Histopathological and hemato-biochemical aspects- A review. Emerg. Contam., 9(3): 100234. DOI: 10.10 16/j.emcon.2023.100234.
- Huang, Y., et al. 2023. Prolonged darkness attenuates imidacloprid toxicity through the brain-gut-microbiome axis in zebrafish, Danio rerio. Sci. Total Env., 881: 163481.
- Naiel, M.A.E., et al. 2020. The antioxidative and immunity roles of chitosan nanoparticle and vitamin C-supplemented diets against imidacloprid toxicity on Oreochromis niloticus. Aquac., 523: 735 219. DOI: 10.1016/j.aquaculture.2020.735219.