Optimizing Transesterification of Azadirachta indica Fatty Acids: Aspen-Based Simulation for Methylated Ester Production in Reactive Distillation

IJEP 44(14): 1284-1292 : Vol. 44 Issue. 14 (Conference 2024)

Samidha Banka Agrawal1* and Sachin Prakashbhai Parikh2

1. Gujarat Technological University, Chemical Engineering, Ahmedabad – 382 424, Gujarat, India
2. Commissionerate of Technical Education, Gandhinagar – 382 010, Gujarat, India

Abstract

This research investigates the transesterification process of five key fatty acids (palmitic, stearic, oleic, linoleic and arachidic) derived from Azadirachta indica for the production of methylated esters. The study focuses on evaluating the thermodynamic properties of these individual fatty acids to understand their behaviour during the transesterification process. Using the RADFRAC module in Aspen, a comprehensive simulation of the reactive distillation process is conducted to optimize conditions and enhance the efficiency of methylated ester production. The choice of these specific fatty acids aims to explore the diverse composition of Azadirachta indica and its potential application in biodiesel production. The simulation results provide insights into the complex interactions within the reactive distillation column, offering a valuable contribution to the understanding and optimization of transesterification processes. This research bridges the gap between theoretical understanding and practical application, paving the way for sustainable and efficient biofuel production from Azadirachta indica fatty acids.

Keywords

Neem oil, Biodiesel, Reactive distillation, Process simulation, Process intensification

References

  1. Das, P., et al. 2024. Can biofuels help achieve sustainable development goals in India? A systematic review. Renewable Sustain. Energy Reviews. 192: 114246. DOI: 10.1016/J.RSER.2023.114246.
  2. Rial, R.C. 2024. Biofuels versus climate change: Exploring potentials and challenges in the energy transition. Renewable Sustain. Energy Reviews. 196: 114369. DOI: 10.1016/J.RSER.2024.114 369.
  3. Banka, S. and S. Parikh. 2019. Non-edible oil biodiesels: The cutting edge future of renewable energy in India. Asia Pacific J. Chem. Eng., 12: 1–26. DOI: 10.1002/apj.2310.
  4. Karmakar, A., S. Karmakar and S. Mukherjee. 2012. Biodiesel production from neem towards feedstock diversification: Indian perspective. Renewable Sustain. Energy Reviews. 16: 1050–1060. DOI: 10.1016/J.RSER.2011.10.001.
  5. Muthu, H., et al. 2010. Synthesis of biodiesel from neem using sulphated zirconia via transesteri-fication. Brazilian J. Chem. Eng., 27: 601–608. DOI: 10.1590/S0104-66322010000400012.
  6. Csurhes, S. 2008. Neem tree: Invasive plant risk assessment. Queensland Government.
  7. Leung, D.Y.C., X. Wu and M.K.H. Leung. 2010. A review on biodiesel production using catalyzed transesterification. Appl. Energy. 87: 1083–1095. DOI: 10.1016/j.apenergy.2009.10.006.
  8. Demirbas, A. 2005. Biodiesel production from vegetable oils via catalytic and non-catalytic super-critical methanol transesterification methods. Prog. Energy Combust. Sci., 31: 466–487. DOI: 10.1016/J.PECS.2005.09.001.
  9. Kiss, A.A. 2010. Separative reactors for integra-ted production of bioethanol and biodiesel. Comput. Chem. Eng., 34: 812–820. DOI: 10.1016/J.COMP CHEMENG.2009.09.005.
  10. Kiss, A.A., A.C. Dimian and G. Rothenberg. 2008. Biodiesel production by reactive distillation. Computer Aided Chem. Eng., 25: 775-780. DOI: 10.10 16/S1570-7946(08)80135-6.
  11. Reyero, I., et al. 2015. Kinetics of the NaOH-catalyzed transesterification of sunflower oil with ethanol to produce biodiesel. Fuel Process. Tech., 129: 147–155.
  12. Aransiola, E.F. 2012. Production of biodiesel from crude neem oil feedstock and its emissions from internal combustion engines. African J. Biotech., 11: 6178–6186. DOI: 10.5897/AJB11.2301.
  13. Ragit, S.S., S.K. Mohapatra and K. Kundu. 2010. Performance and emission evaluation of a diesel engine fueled with methyl ester of neem oil and filtered neem oil. J. Sci. Ind. Res. (India). 69: 62–66.
  14. Sekhar, M.C., et al. 2009. Production of biodiesel from neem oil. Int. J. Eng. Studies. 1: 295–302.
  15. Betiku, E., et al. 2017. Two-step conversion of neem (Azadirachta indica) seed oil into fatty methyl esters using a heterogeneous biomass-based catalyst: An example of cocoa pod husk. Energy Fuels. 31: 6182–6193.
  16. Gurunathan, B. and A. Ravi. 2015. Process optimization and kinetics of biodiesel production from neem oil using copper doped zinc oxide heterogeneous nanocatalyst. Bioresour. Tech., 190: 424–428. DOI: 10.1016/j.biortech.2015.04.101.
  17. Selvabala, V.S., et al. 2010. Removal of free fatty acid in Azadirachta indica (neem) seed oil using phosphoric acid modified mordenite for biodiesel production. Bioresour. Tech., 101: 5897–5902. DOI: 10.1016/j.biortech.2010.02.092.
  18. Awolu, O.O. and S.K. Layokun. 2013. Optimization of two-step transesterification production of biodiesel from neem (Azadirachta indica) oil. Int. J. Energy Env. Eng., 4: 1–9.
  19. Kiss, A.A. 2011. Heat-integrated reactive distillation process for synthesis of fatty esters. Fuel Process. Tech., 92: 1288–1296. DOI: 10.1016/J.FUPROC.2011.02.003.
  20. Giwa, A. and S.O. Giwa. 2015. Investigating the effects of operating parameters of a reaction integrated distillation process for SAME production using Aspen Plus. Int. J. Sci. Res., 4(7): 2349-2356.
  21. Giwa, A., A. Bello and S.O. Giwa. 2014. Performance analyses of fatty acids in reactive distillation process for biodiesel production. Int. J. Sci. Eng. Res., 5(12): 529-540.
  22. Anantapinitwatna, A., et al. 2019. Effect of water content in waste cooking oil on biodiesel production via ester-transesterification in a single reactive distillation. IOP Conf. Series: Mater. Sci. Eng., 559: 012014. DOI: 10.1088/1757899X/559/1/012014.
  23. Kiss, A.A. 2014. Process intensification technologies for biodiesel production. SpringerBriefs Appl. Sci. Tech., DOI: 10.1007/978-3319-03554-3.
  24. Bhatt, B.I. and S.B. Thakore. 2010. Stoichiometry. Tata McGraw-Hill Publishing Company.
  25. Rose, A. and W.R. Supina. 1961. Vapour pressure and vapour-liquid equilibrium data for methyl esters of the common saturated normal fatty acids.   J. Chem. Eng. Data. 6: 173–179.