IJEP 44(6): 483-494 : Vol. 44 Issue. 6 (June 2024)
Tarak Nath Chell , Debanjan Bagui, Arnab Jyoti Mandal, Ratan Mandal* and Tushar Jash*
Jadavpur University, School of Energy Studies, Kolkata – 700 032, West Bengal, India
Abstract
The following study presents an analysis and comparison of monocrystalline (m-Si) and polycrystalline (p-Si) based grid-connected solar phototvoltaic (SPV) systems based on the existing market cost of photovoltaic (PV) components including PV modules, inverters and electrical and mechanical equipments alongwith necessary accessories for a 5 MW SPV power plant at Saboo village, Ladakh, India using PVSyst. The study revealed that the average yearly energy generation for m-Si is 11.34 GWh and 11.32 GWh for p-Si PV systems. The levelized cost of electricity (LCOE), payback period and return on investment (ROI) for m-Si and p-Si PV systems are 1.495 INR/kWh, 638%, 3.2 years and 1.450 INR/kWh, 674%, 3.1 years, respectively. Throughout the lifetime of proposed PV plant, a total emission of 203.3 ktCO2 for m-Si and 202.8 ktCO2 for p-Si can be averted. Performance results indicate that in terms of efficient energy generation and performance ratio (PR), m-Si PV system has a slight edge over p-Si PV system. However, due to the affordability of p-Si module, the initial investment cost for the p-Si PV system can be lowered by upto 5% compared to m-Si PV system which makes it economically more viable.
Keywords
Solar photovoltaic power plant, Performance ratio, PVSyst simulation, Techno-economic analysis, Performance parameters
References
- IEA. 2020. Word energy outlook. 2022. International Energy Agency.
- BEE. 2001. general aspects of energy management and energy audit. Bureau of Energy Efficiency.
- IEA. 2022. Fossil fuels consumption subsidies. International Energy Agency.
- IEA. 2021. Indian energy outlook 2021. International Energy Agency.
- MNRE. Solar overview. Ministry of New and Renewable Energy, Govt. of India, New Delhi.
- MNRE. Physical achievements. Ministry of New and Renewable Energy, Govt. of India, New Delhi.
- Prateek. 2018. Jammu and Kashmir to get 23 GW of solar projects starting with 2.5 GW in Kargil and 5 GW in Leh. Mercom India News.
- PIB. 2021. Power ministry transfers Srinagar Leh transmission system to powergrid. Press Information Bureau, Govt. of India. available at: https://pib.gov.in/PressReleaseIframePage.aspx?PRID= 1722479. Accessed on 27 June, 2023.
- Dutta, S. 2022. Rs 627 cr plan in offing to supply grid power to Ladakh LAC villages. The Times of India.
- Yazdani, H. and M. Yaghoubi. 2021. Techno-economic study of photovoltaic systems performance in Shiraz, Iran. Renew. Energy. 172: 251-262. doi: 10.1016/j.renene.2021.03.012.
- Chandel, M.A. et al. 2014. Techno-economic analysis of solar photovoltaic power plant for garment zone of Jaipur city. Case Studies Thermal Eng., 2: 1-7. DOI: 10.1016/j.csite.2013.10.002.
- Ahsan, S., et al. 2016. Design and cost analysis of 1 kW photovoltaic system based on actual performance in Indian scenario. Perspectives Sci., 8: 642-644. DOI: 10.1016/j.pisc.2016.06.044.
- Poudyal, R., et al. 2021. Techno-economic feasibility analysis of a 3-kW PV system installation in Nepal. Renew. Wind Water Solar. 8(1): 1-18. DOI: 10.1186/s40807-021-00068-9.
- Average solar radiation data for Leh Ladak, India. Available at: https://www.lehladakhindia.com/climate/. Accessed on 21 July, 2023.
- Ebhota, W.S. and P.Y. Tabakov. 2023. Influence of photovoltaic cell technologies and elevated temperature on photovoltaic system performance. Ain Shams Eng. J., 14(7): 101984. DOI: 10.1016/j.asej. 2022.101984.
- Climatic data of Leh-Ladakh. Leh Ladakh India. available at: https://www.lehladakhindia.com/climate/.
- Aveage hourly temperature of Leh-Ladakh. Weather Spark. available at : www.weatherspark.com.
- Andrews, R., et al. 2013. The effects of snowfall on solar photovoltaic performance. Solar Energy. 92: 84-97. DOI: 10.1016/j.solener.2013.02. 014.
- Ilse, K., et al. 2019. Techno-economic assessment of soiling losses and mitigation strategies for solar power generation. Joule. 3(10): 2303-2321. DOI: 10.1016/j.joule.2019.08.019.
- Conceicao, R., et al. 2022. Soiling effect in solar energy conversion systems: A review. Renew. Sustain. Energy Reviews. 162: 112434. DOI: 10.1016/j.rser.2016.01.044.
- Conceição, R., et al. 2023. Experimental soiling assessment, characterization and modelling of a highly-compact heliostat field in an urban environment. Solar Energy. 262: 111812. DOI: 10.1016/j.solener.2023.111812.
- NASA_AQCS_119, Leh, India air pollution: Real-time air quality index (AQI). The World Air Quality Index Project. available at: https://aqicn.org/station/india/leh/nasa_aqcs_119.
- Hassan, M.A., et al. 2022. A review of particulate pollution over Himalaya region: Characteristics and salient factors contributing ambient PM pollu-tion. Atmos. Env., 119472. DOI: 10.1016/j.atmos env.2022.119472.
- Ghosh, A., et al. 2023. PM10within Indian standard is achievable by mitigating the sources of PM1: A thirteen years (2009–2021) long study and future prediction (2024) over the eastern Hima-layas, India. Atmos. Env., 306: 119845. DOI: 10.1016/j.atmosenv.2023.119845.
- Daily Excelsior Magazine report. 2015. Available at: https://epaper.dailyexcelsior.com/epaperpdf/015/aug/15aug09/page19.pdf. Accessed on 11 July, 2023.
- Raghuvanshi, M. S., et al. 2017. Struggle from subsistence to sustainability and threat to local biodiversity under changing climate: A case study on Ladakh folk agriculture. Climate Change Env. Sustain.,5(1): 59-65. DOI: 10.5958/2320-642 X.2017.00006.0.
- Solar PV module soiling loss map. Solar Anywhere. available at: https://www.solaranywhere.com/support/solar-energy-modeling-services/soiling-loss-modeling/. Accessed on 15 July, 2023.
- Rajput, P., et al. 2016. Degradation of mono-crystalline photovoltaic modules after 22 years of outdoor exposure in the composite climate of India. Solar Energy.135:786-795. DOI: 10.1016/j.solene r.2016.06.047.
- Tax rate of solar module and its components. Available at: https://cleartax.in/s/gst-rates-solar-power-based-devices-systems. Accessed on 5 July, 2023.
- Solar feed in tariff rate of Jammu and Kashmir. available at: https://www.jercjkl.nic.in/pdf/Gist% 20of%20SuoMoto%20Petition%20in%2 0the% 20matter%20of%20determination% 20of%20 Levellised%20Generic%20Tariff.pdf. Accessed on 25 July, 2023.
- Dellosa, J.T., et al. 2021. Techno-economic analysis of a 5 MWp solar photovoltaic system in the Philippines. 2021 IEEE International Conference on Environment and electrical engineering and 2021 IEEE Industrial and commercial power systems. EEEIC/I&CPS Europe. Proceedings, pp 1-6.
- Abas, N., et al. 2022. Techno-economic feasibility analysis of 100 MW solar photovoltaic power plant in Pakistan. Tech. Eco. Smart Grids Sustain. Energy. 7(1): 16. DOI: 10.1007/s40866-022-00139-w.
- Kazem, H.A., et al. 2017 . Techno-economic feasibility analysis of 1 MW photovoltaic grid-connected system in Oman. Case Studies Thermal Eng., 10: 131-141. DOI: 10.1016/j.csite.2017.05.008.
- Andenæs, E., et al. 2018. The influence of snow and ice coverage on the energy generation from photovoltaic solar cells. Solar Energy. 159: 318-328. DOI: 10.1016/j.solener.2017.10.078.
- Aboagye, B., et al. 2021. Degradation analysis of installed solar photovoltaic (PV) modules under outdoor conditions in Ghana. Energy Reports. 7: 6921-6931. DOI: 10.1016/j.egyr.2021.10.046.
- SNB. 2019. Mono vs poly- A climatic study in cold zones. Suar Energy. available at : https://www.saur energy.com/solar-energy-articles/mono-vs-poly-a-climatic-study-in-cold-zones.
- Tarigan, E. and F.D. Kartikasari. 2015. Techno-economic simulation of a grid-connected PV system design as specifically applied to residential in Sura-baya, Indonesia. Energy Procedia. 65: 90-99. DOI: 10.1016/j.egypro.2015.01.038.
- Ali, H. and H. A. Khan. 2020. Techno-economic evaluation of two 42 kWp polycrystalline-Si and CIS thin-film-based PV rooftop systems in Pakistan. Renew. Energy. 152: 347-357. DOI: 10.1016/j.ren ene.2019.12.144.
- Sheha, M., et al. 2021. Techno-economic analysis of the impact of dynamic electricity prices on solar penetration in a smart grid environment with distributed energy storage. Appl. Energy. 282: 116168. DOI: 10.1016/j.apenergy.2020.116168.
- Ayadi, O., et al. 2018. Techno-economic assessment of a grid-connected photovoltaic system for the University of Jordan. Sustain. cities soc., 39: 93-98. DOI: 10.1016/j.scs.2018.02.011.