Techno-Economic and Environmental Performances of Mono- and Poly-Crystalline Silicon Solar Cell Based SPV Power Plants: A Case Study at Saboo, Ladakh in India

IJEP 44(6): 483-494 : Vol. 44 Issue. 6 (June 2024)

Tarak Nath Chell , Debanjan Bagui, Arnab Jyoti Mandal, Ratan Mandal* and Tushar Jash*

Jadavpur University, School of Energy Studies, Kolkata – 700 032, West Bengal, India

Abstract

The following study presents an analysis and comparison of monocrystalline (m-Si) and polycrystalline (p-Si) based grid-connected solar phototvoltaic (SPV) systems based on the existing market cost of photovoltaic (PV) components including PV modules, inverters and electrical and mechanical equipments alongwith necessary accessories for a 5 MW SPV power plant at Saboo village, Ladakh, India using PVSyst. The study revealed that the average yearly energy generation for m-Si is 11.34 GWh and 11.32 GWh for p-Si PV systems. The levelized cost of electricity (LCOE), payback period and return on investment (ROI) for m-Si and p-Si PV systems are 1.495 INR/kWh, 638%, 3.2 years and 1.450 INR/kWh, 674%, 3.1 years, respectively. Throughout the lifetime of proposed PV plant, a total emission of 203.3 ktCO2 for m-Si and 202.8 ktCO2 for p-Si can be averted. Performance results indicate that in terms of efficient energy generation and performance ratio (PR), m-Si PV system has a slight edge over p-Si PV system. However, due to the affordability of p-Si module, the initial investment cost for the p-Si PV system can be lowered by upto 5% compared to m-Si PV system which makes it economically more viable.

Keywords

Solar photovoltaic power plant, Performance ratio, PVSyst simulation, Techno-economic analysis, Performance parameters

References

  1. IEA. 2020. Word energy outlook. 2022. International Energy Agency.
  2. BEE. 2001. general aspects of energy management and energy audit. Bureau of Energy Efficiency.
  3. IEA. 2022. Fossil fuels consumption subsidies. International Energy Agency.
  4. IEA. 2021. Indian energy outlook 2021. International Energy Agency.
  5. MNRE. Solar overview. Ministry of New and Renewable Energy, Govt. of India, New Delhi.
  6. MNRE. Physical achievements. Ministry of New and Renewable Energy, Govt. of India, New Delhi.
  7. Prateek. 2018. Jammu and Kashmir to get 23 GW of solar projects starting with 2.5 GW in Kargil and 5 GW in Leh. Mercom India News.
  8. PIB. 2021. Power ministry transfers Srinagar Leh transmission system to powergrid. Press Information Bureau, Govt. of India. available at: https://pib.gov.in/PressReleaseIframePage.aspx?PRID= 1722479. Accessed on 27 June, 2023.
  9. Dutta, S. 2022. Rs 627 cr plan in offing to supply grid power to Ladakh LAC villages. The Times of India.
  10. Yazdani, H. and M. Yaghoubi. 2021. Techno-economic study of photovoltaic systems performance in Shiraz, Iran. Renew. Energy. 172: 251-262. doi: 10.1016/j.renene.2021.03.012.
  11. Chandel, M.A. et al. 2014. Techno-economic analysis of solar photovoltaic power plant for garment zone of Jaipur city. Case Studies Thermal Eng., 2: 1-7. DOI: 10.1016/j.csite.2013.10.002.
  12. Ahsan, S., et al. 2016. Design and cost analysis of 1 kW photovoltaic system based on actual performance in Indian scenario. Perspectives Sci., 8: 642-644. DOI: 10.1016/j.pisc.2016.06.044.
  13. Poudyal, R., et al. 2021. Techno-economic feasibility analysis of a 3-kW PV system installation in Nepal. Renew. Wind Water Solar. 8(1): 1-18. DOI: 10.1186/s40807-021-00068-9.
  14. Average solar radiation data for Leh Ladak, India. Available at: https://www.lehladakhindia.com/climate/. Accessed on 21 July, 2023.
  15. Ebhota, W.S. and P.Y. Tabakov. 2023. Influence of photovoltaic cell technologies and elevated temperature on photovoltaic system performance. Ain Shams Eng. J., 14(7): 101984. DOI: 10.1016/j.asej. 2022.101984.
  16. Climatic data of Leh-Ladakh. Leh Ladakh India. available at: https://www.lehladakhindia.com/climate/.
  17. Aveage hourly temperature of Leh-Ladakh. Weather Spark. available at : www.weatherspark.com.
  18. Andrews, R., et al. 2013. The effects of snowfall on solar photovoltaic performance. Solar Energy. 92: 84-97. DOI: 10.1016/j.solener.2013.02. 014.
  19. Ilse, K., et al. 2019. Techno-economic assessment of soiling losses and mitigation strategies for solar power generation. Joule. 3(10): 2303-2321. DOI: 10.1016/j.joule.2019.08.019.
  20. Conceicao, R., et al. 2022. Soiling effect in solar energy conversion systems: A review. Renew. Sustain. Energy Reviews. 162: 112434. DOI: 10.1016/j.rser.2016.01.044.
  21. Conceição, R., et al. 2023. Experimental soiling assessment, characterization and modelling of a highly-compact heliostat field in an urban environment. Solar Energy. 262: 111812. DOI: 10.1016/j.solener.2023.111812.
  22. NASA_AQCS_119, Leh, India air pollution: Real-time air quality index (AQI). The World Air Quality Index Project. available at: https://aqicn.org/station/india/leh/nasa_aqcs_119.
  23. Hassan, M.A., et al. 2022. A review of particulate pollution over Himalaya region: Characteristics and salient factors contributing ambient PM pollu-tion. Atmos. Env., 119472. DOI: 10.1016/j.atmos env.2022.119472.
  24. Ghosh, A., et al. 2023. PM10within Indian standard is achievable by mitigating the sources of PM1: A thirteen years (2009–2021) long study and future prediction (2024) over the eastern Hima-layas, India. Atmos. Env., 306: 119845. DOI: 10.1016/j.atmosenv.2023.119845.
  25. Daily Excelsior Magazine report. 2015. Available at: https://epaper.dailyexcelsior.com/epaperpdf/015/aug/15aug09/page19.pdf. Accessed on 11 July, 2023.
  26. Raghuvanshi, M. S., et al. 2017. Struggle from subsistence to sustainability and threat to local biodiversity under changing climate: A case study on Ladakh folk agriculture. Climate Change Env. Sustain.,5(1): 59-65. DOI: 10.5958/2320-642 X.2017.00006.0.
  27. Solar PV module soiling loss map. Solar Anywhere. available at: https://www.solaranywhere.com/support/solar-energy-modeling-services/soiling-loss-modeling/. Accessed on 15 July, 2023.
  28. Rajput, P., et al. 2016. Degradation of mono-crystalline photovoltaic modules after 22 years of outdoor exposure in the composite climate of India. Solar Energy.135:786-795. DOI: 10.1016/j.solene r.2016.06.047.
  29. Tax rate of solar module and its components. Available at: https://cleartax.in/s/gst-rates-solar-power-based-devices-systems. Accessed on 5 July, 2023.
  30. Solar feed in tariff rate of Jammu and Kashmir. available at: https://www.jercjkl.nic.in/pdf/Gist% 20of%20SuoMoto%20Petition%20in%2 0the% 20matter%20of%20determination% 20of%20 Levellised%20Generic%20Tariff.pdf. Accessed on 25 July, 2023.
  31. Dellosa, J.T., et al. 2021. Techno-economic analysis of a 5 MWp solar photovoltaic system in the Philippines. 2021 IEEE International Conference on Environment and electrical engineering and 2021 IEEE Industrial and commercial power systems. EEEIC/I&CPS Europe. Proceedings, pp 1-6.
  32. Abas, N., et al. 2022. Techno-economic feasibility analysis of 100 MW solar photovoltaic power plant in Pakistan. Tech. Eco. Smart Grids Sustain. Energy. 7(1): 16. DOI: 10.1007/s40866-022-00139-w.
  33. Kazem, H.A., et al. 2017 . Techno-economic feasibility analysis of 1 MW photovoltaic grid-connected system in Oman. Case Studies Thermal Eng., 10: 131-141. DOI: 10.1016/j.csite.2017.05.008.
  34. Andenæs, E., et al. 2018. The influence of snow and ice coverage on the energy generation from photovoltaic solar cells. Solar Energy. 159: 318-328. DOI: 10.1016/j.solener.2017.10.078.
  35. Aboagye, B., et al. 2021. Degradation analysis of installed solar photovoltaic (PV) modules under outdoor conditions in Ghana. Energy Reports. 7: 6921-6931. DOI: 10.1016/j.egyr.2021.10.046.
  36. SNB. 2019. Mono vs poly- A climatic study in cold zones. Suar Energy. available at : https://www.saur energy.com/solar-energy-articles/mono-vs-poly-a-climatic-study-in-cold-zones.
  37. Tarigan, E. and F.D. Kartikasari. 2015. Techno-economic simulation of a grid-connected PV system design as specifically applied to residential in Sura-baya, Indonesia. Energy Procedia. 65: 90-99. DOI: 10.1016/j.egypro.2015.01.038.
  38. Ali, H. and H. A. Khan. 2020. Techno-economic evaluation of two 42 kWp polycrystalline-Si and CIS thin-film-based PV rooftop systems in Pakistan. Renew. Energy. 152: 347-357. DOI: 10.1016/j.ren ene.2019.12.144.
  39. Sheha, M., et al. 2021. Techno-economic analysis of the impact of dynamic electricity prices on solar penetration in a smart grid environment with distributed energy storage. Appl. Energy. 282: 116168. DOI: 10.1016/j.apenergy.2020.116168.
  40. Ayadi, O., et al. 2018. Techno-economic assessment of a grid-connected photovoltaic system for the University of Jordan. Sustain. cities soc., 39: 93-98. DOI: 10.1016/j.scs.2018.02.011.