IJEP 44(6): 495-506 : Vol. 44 Issue. 6 (June 2024)
Basavraj Chikkasanshi, Swanand A. Ajgaonkar and Manjunatha S.*
Karnatak Science College (Constituent College of Karnatak University), Department of Geology, Dharwad – 580 001, Karnataka, India
Abstract
The evaluation of groundwater potential zone in Hiranyakeshi lower basin situated in Belagavi district, Karnataka, India is accomplished with the consideration of 10 thematic maps, such as lithology, lineament density, geomorphology, drainage density, slope, elevation, soil, landuse/land cover, rainfall, depth to water level using remote sensing, geographic information system and weighted overlay methods. The weighted overlay based multi-criteria analysis is adopted to integrate the thematic factors. Ranks and weights were assigned to each layer and class, based on its correspondence with groundwater and potential zones were classified into 5 categories: very good (9.72%), good (46.50%), medium (23.97%), poor (12.28%) and very poor (7.53%). The very high and high prospect zones are to be useful in future water extraction, whereas the low and very low zones need management strategies for conservation of water resources. Therefore, outcome of the study can be beneficial for stakeholders for planning and management of groundwater resources.
Keywords
Groundwater, Hiranyakeshi, Remote sensing, GIS
References
- Assaf, H. and M. Saadeh. 2008. Geostatistical assessment of groundwater nitrate contamination with reflection on DRASTIC vulnerability assessment: The case of the upper Litani basin, Lebanon. Water Resour. Manage., 23: 775-796.
- De Villeirs, M. 2000. Water: The fate of our most precious resource. Mariner Book, Houghton Mifflin Company, Boston.
- Mallick, J., et al. 2015. Geospatial and geosta-tistical approach for groundwater potential zone delineation. Hydrol. Processes. 29(3): 395-418.
- Tiwari, V.M., J. Wahr and S. Swenson. 2009. Dwindling groundwater resources in Northern India from satellite gravity observations. Geophys. Res. Letters. 36(18): 1-5.
- Doell, P., et al. 2014. Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modelling with information from well observations and GRACE satellites. Water Resour. Res., 50(7): 5698-5720.
- Manjunatha, S., et al. 2016. Study of groundwater potential zone of Karanja river basin using remote sensing and GIS techniques. Int. J. Geomatics Geosci., 6(1): 1782-1795.
- Priyan, K. 2021. Issues and challenges of groundwater and surface water management in semi-arid regions. In Groundwater resources development and planning in the semi-arid region. Ed C.B. Pande and K.N. Maharir. Springer, Cham. pp 1-17.
- Arivazhagan, S., et al. 2021. Change detection analysis and delineation of artificial groundwater recharge suitability zone for Dindigul block using geoinformatics techniques. In Groundwater resources development and planning in the semi-arid region. Ed C.B. Pande and K.N. Moharir. Springer, Cham. pp 407-433.
- Maity, D.K. and S. Mandal. 2019. Identification of groundwater potential zones of the Kumari river basin, India: An RS and GIS based semi-quantitative approach. Env. Develop. Sustain., 31: 1013-1034. DOI: 10.1007/s10668-017-0072-0.
- Asadi, S., P. Vuppala and M.A. Reddy. 2007. Remote sensing and GIS techniques for evaluation of groundwater quality in Municipal Corporation of Hyderabad (zone-V), India. Int. J. Env. Res. Public Health. 4: 45-52. DOI: 10.3390/ijerph200701008.
- Biswas, A., A. Jana and S.P. Sharma. 2012. Delineation of groundwater potential zones using remote sensing and geographic inforamation systems techniques: A case study from Ganjam district, Orissa. Res. J. Recent Sci., 1(9): 59-66.
- Varughese, A., et al. 2012. Indentification of shallow groundwater potential zones using GIS- A case study. Int. J. Adv. Eng. Applications. 5(4): 65-70.
- Nampak, H., B. Pradhan and M.A. Manap. 2014. Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J. Hydrol., 513: 283-300.
- Singh, A.K. and S.R. Prakash. 2002. An integrated approach of remote sensing, geophysics and GIS to evaluation of groundwater potentiality of Ojhala sub-watershed, Mirjapur district, U.P., India. Asian Conference on GIS, GPS, aerial photography of remote sensing. Bangkok, Thailand.
- Goodchild, M.F. 1993. The state of GIS for environmental problem solving. In Environmental modelling with GIS. Ed M.F. Goodchild, B.O. Parks and L.T. Steyaert. Oxford University Press, New York. pp 8-15.
- Stafford, K.W., L. Rosales-Lagarde and P.J. Baston. 2008. Castile evaporite karst potential map of the gypsum plain, Eddy County, New Mexico and Culberson County, Texas: A GIS methodological comparison. J. Cave Karst Studies. 70(1):35-46.
- Krishnamurthy, J., et al. 1996. An approach to demarcate groundwater potential zones through remote sensing and a geographical information system. Int. J. Remote Sensing. 17(10): 1867-1884.
- Meijerink, A.M.J. 1996. Remote sensing application to hydrology: Groundwater. Hydrol. Sci. J., 41(4): 549-561.
- Nour, S. 1996. Groundwater potential for irrigation in the East Oweinat area, western desert Egypt. Env. Geol., 27(3): 143-154.
- Sander, P., M.M. Chesley and T.B. Minor. 1996. Groundwater assessment using remote sensing and GIS in a rural groundwater project in Ghana: Lessons learned. Hydrogeol. J., 4(3): 40-49.
- Edet, A.E., et al. 1998. Application of remote-sensing data the groundwater exploration: A case study of the Cross River state, southeastern Nigeria. Hydrogeol. J., 6(3): 394-404.
- Shahid, S. and S.K. Nath. 2002. GIS integration of remote sensing and electrical sounding data for hydrogological exploration. J. Spatial Hydrol., 2(1): 1-12.
- Rao, Y.S. and D.K. Jugran. 2003. Delineation of groundwater potential zones and zones of groundwater quality suitable for domestic purpose using remote sensing and GIS. Hydrol. Sci. J., 48(5): 821-833.
- Sreedevi, P.D., K. Subramanyam and S. Ahmed. 2005. Integrated approach for delinieating potential zones to explore for groundwater in the Pageru river basin, Cuddapah district, Andhra Pradesh, India. Hydrogeol. J., 13(3): 534-543.
- Srivastava, P.K. and A.K. Bhattacharya. 2006. Groundwater assessement through an integrated approach using remote sensing, GIS and resistivity techniques: A case study from a hard rock terrain. Int. J. Remote Sensing. 27(20): 4599-4620.
- Jha, M.K., et al. 2007. Groundwater management and development by integrated remote sensing and geographic information system: Prospects and constraints. Water Resour. Manage., 21(2): 427-467.
- Madrucci, V., F. Taioli and C.C. Araujo. 2008. Groundwater favourability map using GIS multi-criteria data analysis on crystalline terrain, Sao Paulo state, Brazil. J. Hydrol., 357: 153-173.
- Chowdhury, A., M.K. Jha and V.M. Chowdhury. 2010. Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal using RS, GIS and MCDM techniques. Env. Earth Sci., 59(6): 1209-1222.
- Chenini, I., A.B. Mammou and M.E. May. 2010. Groundwater recharge zone mapping using GIS-based multicriteria analysis: A case study in central Tunisia (Malnas basin). Water Resour. Manage., 24: 921-939.
- Jha, M.K., V.M. Chowdary and A. Chowdhury. 2010. Groundwater assessement in Salboni block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeol. J., 18(7): 1713-1728.
- Gupta, M. and P.K. Srivastava. 2010. Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavayarh, Gujarat, India. Water Int., 35(2): 233-245. DOI: 10.1080/02508061003664419.
- Singh, C.K., et al. 2011. Quantitative modelling of groundwater in Satluj river basin of Rupnagar district of Punjab using remote sensing and geographic information system. Env. Earth Sci., 62(4): 871-881. DOI: 10.1007/s12665-010-0574-7.
- Mukherjee, P., C.K. Singh and S. Mukherjee. 2012. Delineation of groundwater potential zones in arid region of India- A remote sensing and GIS approach. Water Resour. Manage., 20(9): 2643-2672. DOI: 10.1007/s11269-012-0038-9.
- Nag, S.K. and P. Ghosh. 2013. Delineation of groundwater potential zone in Chatna block, Bankura district, West Bengal, India using remote sensing and GIS techniques. Env. Earth Sci., 70: 2115-2127.
- Singh, P., A. Gupta and M. Singh. 2014. Hydrological inferences from watershed analysis for water resources management using remote sensing and GIS techniques. Egyptian J. Remote Sensing Space Sci., 17: 111-121. DOI: 10.1016/j.eirs. 2014.09. 003.
- Machiwal, D. and P.K. Singh. 2015. Comparing GIS-based multi-creteria decision making and Boolean logic modelling approaches for delineating groundwater recharge zones. Arabian J. Geosci., 8(12): 10675-10691. DOI:10.1007/s12517-015-2002-5.
- Pande, C.B., et al. 2017. Assessment of groundwater potential zonation of Mahesh river basin Akola and Buldhana districts, Maharashtra, India using remote sensing and GIS techniques. Sustain. Water Resour. Manage., 4: 965-979. DOI: 10.10 07/s40899-017-0193-5.
- Sener, E., S. Sener and A. Davraz. 2018. Groundwater potential mapping by combining fuzzy-analytic hierarchy process and GIS in Beysehir lake basin, Turkey. Arabian J. Geosci., 11(8): 1-21.
- Shailaja, G. and A.K. Kadam. 2019. Multiple-criteria decision analysis techniques for delineation of groundwater potential zones in a semi-arid hard-rock aquifer in Maharashtra, India. Hydrogeol. J., 27: 639-654. DOI: 10.1007/s10040-018-1883-2.
- Saranya, T. and S. Saravanan. 2020. Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram district, Tamil Nadu, India. Model. Earth Systems Env., 6: 1105–1122. DOI: 10.1007/s40808-020-00744-7.
- Rajasekhar, M., et al. 2022. Identification of grou-ndwater potential zones in southern India using geospatial and decision making approaches. Appl. Water Sci., 12: 68. DOI: 1007/s13201-022-0160 3-9.
- Murasingh, S., R. Jha and S. Adamala. 2017. Geospatial technique for delineation of groundwater potential zones in mine and dense forest area using weighed index overlay technique. Groundwater Sustain. Develop., 7. DOI: 10.1016/j.gsd.2017.1 2.001.
- Ajgaonkar, S. and S. Manjunatha.2021. Mapping of groundwater potential zones in Lingasugar taluk in northeastern part of Karnataka, India using remote sensing, GIS and multi-criteria data analysis. Disaster Adv., 14(12): 13-22.
- Pande, C.B., et al. 2018. Study of landuse classification in the arid region using multispectral satellite images. Appl. Water Sci., 8(5): 1-11.
- Rane, N. and G.K. Jayaraj. 2021. Evaluation of multiwell pumping aquifer tests in unconfined aquifer system by Neuman (1975) method with numerical modelling. In Groundwater resources development and planning in the semi-arid region. Ed C.B. Pande and K.N. Moharir. Springer, Cham. pp 93-106.
- Acharya, T. and S.K. Nag. 2013. Study of groundwater prospects of the crystalline rocks in Purulia district, West Bengal, India using remote sensing data. Earth Resour., 1(2): 54-59.
- O’Leary, D.W., J.D. Friedman and H.A. Poh. 1976. Lineaments, linear, lineations: Some standards for old terms. Geol. Soc. America Bulletin. 87(10): 1463-1469.
- Bhuvaneswaran, C., A. Ganesh and S. Nevedita. 2015. Spatial analysis of groundwater potential zones using remote sensing, GIS and MIF techniques in uppar Odai sub-watershed, Nandiyar, Cauvery basin, Tamil Nadu. Int. J. Current Res., 7(9): 20765-20774.
- Muralitharan, J. and K. Palanivel. 2015. Groundwater targeting using remote sensing, geographical information system and analytical hierarchy process method in hard rock aquifer system, Karur district, Tamil Nadu, India. Earth Sci. Inf. 8: 827-842. DOI: 10.1007/s12145-015-0213-7.
- Kumar, A. and A.P. Krishna. 2018. Assessment of groundwater potential zones in coal mining impacted hard-rock terrain of India by integrating geospatial and analytic hierarchy process (AHP) approach. Geocarto Int., 33(2): 105-129. DOI: 10.1080/10106049.2016.1232314.
- Machiwal, D., M.K. Jha and B.C. Mal. 2011. Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water Resour. Manage., 25: 1359-1386. DOI: 10.1007/s11269-010-9749-y.
- Deepika, B., A. Kumar and K. Jayappa. 2013. Integration of hydrological factors and demarcation of groundwater prospect zones: Insights from remote sensing and GIS techniques. Env. Earth Sci., 70: 1319-1338. DOI: 10.1007/s12665-013-2218-1.
- Sisay, L. 2007. Application of remote sensing and GIS for groundwater potential zone mapping in northern Ada’s plain (Modjo catchment). Addis Ababa University Publication.
- Thapa, R., S. Gupta and H. Kaur. 2017. Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: A case study from Birbhum district, West Bengal. Appl. Water Sci., 7: 1-15. DOI: 10.1007/s13201-017-0571-3.
- Gintamo, T.T. 2010. Groundwater potential evaluation based on integrated GIS and RS techniques in Bilate river catchment, South Rift valley of Ethiopia. American Sci. Res. J. Eng. Tech. Sci., 10(1): 85-120.
- Fashae, O.A., et al. 2014. Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: An integrated GIS and remote sensing approach. Appl. Water Sci., 4: 19-38. DOI: 10.1007/s 13201-013-0127-9.
- Santosh, C., C. Krishnaiah and G. Deshbhandari. 2019. Landuse/land cover and climate detection in Chikodi taluak, Belagavi district, Karnataka using object based image classification. Int. J. Eng. Adv. Tech., 9(1): 1522-1527.
- Selvam, S., et al. 2015. A GIS based identification of groundwater recharge potential zones using RS and IF technique: A case study in Ottapidaram taluk Tuticorin district, Tamil Nadu. Env. Earth Sci.,
73: 3785-3799. DOI : 10.1007/s12665-014-3664-0. - Pallard, B., A. Castellarin and A. Montanari. 2009. A look at the links between drainage density and flood statistics. Hydrol. Earth System Sci., 13(7): 1019.
- Magesh, N.S., N. Chandrasekar and J. Prince. 2012. Delineation of groundwater potential zones in Theni district, Tamil Nadu using remote sensing, GIS and MIF techniques. Geosci. Frontiers. 3 (2): 189-196. DOI: 10.1016/j.gsf.2011.10.007.