A review on Passive Daylighting systems in buildings

IJEP 44(8): 758-768 : Vol. 44 Issue. 8 (August 2024)

Alok Kumar Maurya, Ravish Kumar* and Ajay Kumar

National Institute of Technology, Department of Architecture and Planning, Patna – 800 005, Bihar, India

Abstract

Since ancient times, humans have utilized natural light to illuminate buildings. Natural light, bestowed upon us by the natural world, possesses an irreplaceable full spectrum that distinguishes it from electricity. The dynamic nature of natural light, characterized by its ever-changing intensity, colour and temperature, contributes to a lively interior ambiance that enhances the occupants’ experience. However, this variability necessitates careful management within buildings to mitigate issues, like glare, highly reflective surfaces and poorly lit spaces. In the pursuit of a more sustainable built environment, the significance of daylighting design has risen prominently in contemporary architecture. Daylighting strategies contribute to a reduction in reliance on artificial lighting, thus fostering sustainable development. These strategies involve harnessing sunlight directly through the integration of daylight systems into buildings, offering a cost-effective, environment friendly and ecologically conscious alternative to the indirect conversion of electricity for lighting, even when sourced from renewable means. This paper presents a comprehensive review of contemporary daylighting technologies and their capacity to illuminate indoor spaces by capturing and distributing sunlight.

Keywords

Daylight, Daylight indices, Daylighting system with shading, Daylighting system without shading, Windows

References

  1. Coventry, J. and C. Andraka. 2017. Dish systems for CSP. Sol. Energy. 152: 140–170. doi: 10.1016/j.solener.2017.02.056.
  2. Baker, K. and N. Steemers. 2002. Daylight design of buildings: A handbook for architects. Routledge, London.
  3. Zeng, Q., et al. 2016. Vitamin D status of psychiatric inpatients at a community teaching hospital in the Midwest. Nord. J. Psychiatry. 70(3): 208–214. doi: 10.3109/08039488.2015.1080297.
  4. Holick, M.F. 2004. Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease and osteoporosis. American J. Clin. Nutr., 79(3): 362–371. doi: 10.1093/ajcn/79.3.362.
  5. Holick, M.F. 2004. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers and cardiovascular disease. American J. Clin. Nutr., 80(6): 1678S-1688S. doi: 10.1093/ajcn/80.6.1678S.
  6. Reichrath, J. 2009. Skin cancer prevention and UV-protection: How to avoid vitamin D deficiency? British J. Dermatol., 61(suppl): 54–60. doi: 10.1111/j.1365-2133.2009.09450.x.
  7. Courret, G., et al. 1998. Design and assessment of an anidolic light-duct. Energy Build., 28(1): 79–99. doi: 10.1016/S0378-7788(97)00066-2.
  8. Omer, A.M. 2008. Green energies and the environment. Renew. Sustain. Energy Rev., 12(7): 1789–1821. DOI: 10.1016/j.rser.2006.05.009.
  9. Alrubaih, M.S., et al. 2013. Research and development on aspects of daylighting fundamentals. Renew. Sustain. Energy Rev., 21: 494–505. doi: 10.1016/j.rser.2012.12.057.
  10. DOE. 2015. Quadrannial technology review: An assessment of energy technologies and research opportunities. Department of Energy, United States of America.
  11. Krarti, M., P. M. Erickson and T. C. Hillman. 2005. A simplified method to estimate energy savings of artificial lighting use from daylighting. Build. Env., 40(6): 747–754. doi: 10.1016/j.buildenv.2004. 08.007.
  12. Castanheira, E.C., H.A. Souza and M.Z. Fortes. 2015. Influence of natural and artificial light on structured steel buildings. Renew. Sustain. Energy Rev., 48: 392–398. doi: 10.1016/j.rser.2015.04. 022.
  13. Littlefair, P.J., et al. 2022. Site layout planning for daylight and sunlight: A guide to good practice. BRE Group.
  14. Littlefair, P.J. 1989. IP 22/89 innovative daylighting systems. IHS BRE Press, UK.
  15. Littlefair, P.J. 1996. Designing with innovative daylighting. Construction Research Communications.
  16. Ander, G. D. 2003. Daylighting performance and design (2nd edn). John Wiley and Sons, Inc., Hoboken.
  17. Bennewitz, P.A., et al. 1998. Computer-oriented building design: Advances in daylighting and thermal simulation tools. Renew. Energy. 14(1): 351–356. doi: 10.1016/S0960-1481(98)00089-5.
  18. Cabús, R. C. and F. O. R. Pereira. 1996. Luminous efficacy of daylighting in intertropical region: An analysis for toplighting systems. Renew. Energy. 8(1): 210–213. DOI: 10.1016/0960-1481(96)888 48-3.
  19. Gago, E.J. 2015. Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load. Renew. Sustain. Energy Rev., 41: 1–13. doi: 10.1016/j.rser.2014.08.002.
  20. DiLaura, D.L., et al. 2011. The lighting handbook: Reference and application (10th edn). Illuminating Engineering Society, North America.
  21. Wang, C., et al. 2015. Critical view on daylighting through solar bottle bulb. Build. Res. J., 61(2): 115–128. doi: 10.2478/brj-2014-0009.
  22. Shi, L. and M.Y.L. Chew. 2012. A review on sustainable design of renewable energy systems. Renew. Sustain. Energy Rev., 16(1): 192–207. doi: 10.1016/j.rser.2011.07.147.
  23. Omer, A.M. 2008. Focus on low carbon technologies: The positive solution. Renew. Sustain. Energy Rev., 12(9): 2331–2357. doi: 10.1016/j.rser. 200 7.04.015.
  24. Eltaweel, A., et al. 2020. Daylight distribution improvement using automated prismatic louvre. J. Daylighting. 7(1): 84–92. doi: 10.15627/jd.2020. 7.
  25. Arnesen, H., T. Kolas and B. Matusiak. 2011. A guide to dayligthting and solar shading systems at high latitude. Research centre on Zero Emission Buildings.
  26. Zhang, D., J. M. Castro and R. K. Kostuk. 2011. One-axis tracking holographic planar concentrator systems. J. Photonics Energy. 1(1): 15505. doi: 10.1117/1.3590943.
  27. BS EN 12665. 2024. Light and lighting: Basic terms and criteria for specifying lighting requirements. European Standards. doi: 10.3403/3032622
    0U.
  28. Ruck, E.L.N. 2004. Daylight in buildings: A source book on daylighting systems and components. Lawrence Berkeley National Laboratory, Berkeley, USA.
  29. Ochoa, C. E. and I. G. Capeluto. 2006. Evaluating visual comfort and performance of three natural lighting systems for deep office buildings in highly luminous climates. Build. Env., 41(8): 1128–1135. doi: 10.1016/j.buildenv.2005.05.001.
  30. Beltrán, L. O., E. S. Lee and S. E. Selkowitz. 1997. Advanced optical daylighting systems: Light shelves and light pipes. J. Illum. Eng. Soc., 26(2): 91–106. doi: 10.1080/00994480.1997.10748194.
  31. Kontadakis, A., et al. 2017. An active sunlight redirection system for daylight enhancement beyond the perimeter zone. Build. Env., 113: 267–279. doi: 10.1016/j.buildenv.2016.09.029.
  32. Howard, T., et al. 1986. Variable area light reflecting assemblies. ASHRAE Trans., 222–234.
  33. Zhang, S. and D. Birru. 2012. An open-loop venetian blind control to avoid direct sunlight and enhance daylight utilization. Sol. Energy. 86(3): 860–866. doi: 10.1016/j.solener.2011.12.015.
  34. Yun, G., D.Y. Park and K.S. Kim. 2017. Appropriate activation threshold of the external blind for visual comfort and lighting energy saving in different climate conditions. Build. Env., 113: 247–266. doi: 10.1016/j.buildenv.2016.11.021.
  35. Oh, M.H., K.H. Lee and J.H. Yoon. 2012. Automated control strategies of inside slat-type blind considering visual comfort and building energy performance. Energy Build., 55: 728–737. doi: 10.10 16/j.enbuild.2012.09.019.
  36. Tabadkani, A. 2020. Innovative control approaches to assess energy implications of adaptive facades based on simulation using EnergyPlus. Sol. Energy. 206: 256–268. doi: 10.1016/j.solener.2020.05. 087.
  37. Chaiyapinunt, S. and N. Khamporn. 2013. Shortwave thermal performance for a glass window with a curved venetian blind. Sol. Energy. 91: 174–185. doi: 10.1016/j.solener.2013.02.007.
  38. Scartezzini, J.L. and G. Courret. 2002. Anidolic daylighting systems. Sol. Energy. 73(2): 123–135. doi: 10.1016/S0038-092X(02)00040-3.
  39. Ward, G.J. and F. M. Rubinstein. 1988. A new technique for computer simulation of illuminated spaces. J. Illum. Eng. Soc., 17(1): 80–91. doi: 10.1080/00994480.1988.10748710.
  40. Courret, G., B. Paule and J. L. Scartezzini. 1996. Anidolic zenithal openings: Daylighting and shading. Int. J. Light. Res. Tech., 28(1): 11–17. doi: 10.1177/14771535960280010201.
  41. Rogora, A. and G. Palermo. 1994. New component for daylighting: First Italian application of a sun duct. Renew. Energy. 5(5): 974–976. doi: 10.101 6/0960-1481(94)90119-8.
  42. Sharp, F., et al. 2014. The use and environmental impact of daylighting. J. Clean. Prod., 85: 462-471. doi: 10.1016/j.jclepro.2014.03.092.
  43. Francini, F., D. Fontani and P. Sansoni . 2015. Transport of light by optical fibers and light pipes. In Sustainable indoor lighting: Green energy and technology. Ed P. Sansoni, L. Mercatelli, A. Farini. Springer, London.
  44. Obradovic, B. and B.S. Matusiak. 2019. Daylight transport systems for buildings at high latitudes. J. Daylighting. 6(2): 60–79. doi: 10.15627/jd.201 9.8.
  45. Callow, L.S.M. 2003. Daylighting performance of optical rods. Sol. Energy. 7. doi: 10.1016/j.solener. 2003.09.015.
  46. Greenup, P.J. 2004. Development of novel technologies for improved natural illumination of high rise office buildings. Queensland University of Technology, Australia.
  47. Edmonds, I. R. and P. J. Greenup. 2002. Daylighting in the tropics. Sol. Energy. 73(2) : 111–121. doi: 10.1016/S0038-092X(02)00039-7.
  48. Tabadkani, A. 2021. Daylight in buildings and visual comfort evaluation: The advantages and limitations. J. Daylighting. 8(2): 181–203. doi: 10.156 27/jd.2021.16.
  49. Koester Lichtplanung. 2023. Available at: http://w ww.koester-lichtplanung.de/pages_gb/news_01. html .
  50. OKALUX. 2023. Available at: https://www.okalux. com/products/product-finder/products/okalux/detail/okalux/.