Bioremediation potential of Bacillus amyloliquefaciens BAB-807 and Bacillus rugosus SPB7 Isolated from Deliming effluent

IJEP 45(1): 3-15 : Vol. 45 Issue. 1 (January 2025)

Raveena Jayam J. and K.J. Sharmila*

Dr. M.G.R. Educational and Research Institute, Department of Biotechnology, Maduravoyal, Chennai – 600 095, Tamil Nadu, India

Abstract

Heavy metal toxicity is rendered easy with bioremediation, an economical and environmentally friendly method. Five isolates were isolated from deliming effluent. The minimum inhibitory concentration (MICs) for each isolate varied in relation to the levels of the heavy metals upto 10,000 ppm. High-resistance isolates were identified by 16S rRNA as Bacillus amyloliquefaciens BAB-807OR740568 and Bacillus rugosus SPB7OR740574. The degradation capacity was assessed using atomic absorption spectroscopy (AAS). Bacillus amyloliquefaciens BAB-807 showed maximum degradation at 37oC at pH 9 for Cr (90%), Pb (90%), Ni (90.2%), Cu (91%) and Cd (80%); at 45oC, pH 9 for Cr (90%), Pb (92%), Ni (91.31%), Cu (93%) and Cd(81%) within 48 hr. However, at 55oC, pH 9, degradation observed was 96% (Cr), 93% (Pb), 92.31% (Ni), 93% (Cu) and 86% (Cd) in 48 hr. Bacillus rugosus SPB7 showed maximum degradation at 45oC, pH 9 in Cr (91%), Pb (92%), Ni (91.45%), Cu (92%) and Cd (78%). Furthermore, at 55oC at pH 9, degradation was 91% (Cr), 92% (Pb), 92% (Ni), 92% (Cu) and 78% (Cd) in 48 hr. This result conveys that the strength of Bacillus amyloliquefaciens BAB-807 and Bacillus rugosus SPB7 degradation is very effective at 370C, 45oC and 55oC temperatures for maximum exposure time. The findings of Bacillus amyloliquefaciens BAB-807and Bacillus rugosus SPB7 exhibiting various degrees of ability to degrade heavy metals potentially provide a basis for the advancement of bioremediation processes for the treatment of tannery effluent.

Keywords

Deliming effluent, Bacillus amyloliquefaciens BAB-807, Bacillus rugosus SPB7, Heavy metals, Bioremediation, Atomic absorption spectrometry

References

  1. Sharmila, K.J. and R.M. Narayanan. 2018. Assessment of various oceanographic parameters and inter comparison of primary production estimates around Chennai coast, Tamil Nadu, India. Appl. Ocean Res., 72: 39–50. DOI: 10.1016/j.apor.2018. 01.002.
  2. Jayam, J.R. and K.J. Sharmila. 2024. Exploring the indigenous microbes from deliming effluent to reduce heavy metals for greener approach. Tuijin Jishu/J. Propulsion Tech., 45(4).
  3. Narayanan, R.M., K.J. Sharmila and K. Dharanirajan. 2016. Evaluation of marine water quality- a case study between Cuddalore and Pondicherry coast, India. Indian J. Geo. Marine Sci., 45(4): 517-532.
  4. Harun, F., et al. 2023. Bioremediation of lead contaminated environment by Bacillus cereus strain BUK_BCH_BTE2: Isolation and characterization of the bacterium. Case studies chem. Env. Eng., 8: 100540. DOI: 10.1016/j.cscee.2023.100540.
  5. Saleh, M., S. Elmelegy and M. Khalil. 2023. Efficient biodegradation and detoxification of Congo Red via newly isolated Bacillus strains. Egyptian J. Chem., 67(1): 67-76. DOI: 10.21608/ejchem.2023. 199509.7719.
  6. Upadhyay, N., et al. 2017. Tolerance and reduction of chromium (VI) by Bacillus sp. MNU16 isolated from contaminated coal mining soil. Frontiers Plant Sci., 8 (May). DOI: 10.3389/fpls.2017.00778.
  7. Chandran, M., et al. 2020. isolation and characterization of chromium reducing Bacillus sp. from soil samples of tannery industries at Ranipet, Vellore district. World J. Pharmacy Pharma. Sci., 5 (6): 1866. DOI: 10.20959/wjpps20166-6998.
  8. Dzionek, A., D. Wojcieszyñska and U. Guzik. 2016. Natural carriers in bioremediation: A review. E. J. Biotech., 23: 28-36. DOI: 10.1016/j.ejbt.2016. 07.003.
  9. Sugasini, A. and K. Rajagopal. 2015. Characterization of physico-chemical parameters and heavy metal analysis of tannery effluent. Int. J. Curr. Microbiol. App. Sci., 4(9): 349-359.
  10. Deng, W., et al. 2015. Carbon dioxide deliming in leather production: A literature review. J. Clean. Prod., 87(1): 26–38. DOI: 10.1016/J.JCLEPRO. 2014.09.066.
  11. Chowdhury, J., et al. 2018a. Ammonia-reduced deliming using glycolic acid and EDTA and its effect on tannery effluent and quality of leather. J. American Leather Chemists Assoc., 113(7): 212-216.
  12. Lu, Z., W. Guo and C. Liu. 2018. Isolation, identification and characterization of novel bacillus subtilis. J. Veterinary Medical Sci., 80(3): 427–433. DOI: 10.1292/jvms.16-0572.
  13. Shakil, S., et al. 2023. Assessment of physicochemical parameters and trace elements in tannery wastewater treatment facility and associated health risks. Int. J. Env. Sci. Tech., 20(10): 11287-11300. DOI: 10.1007/s13762-022-04737-0.
  14. Jayam, J.R. and K.J. Sharmila. 2024. Characterization and biodegradation potential of Bacillus cereus B66 isolated from deliming effluent. African J. Biomed. Res., 27(2s): 210–224. DOI: 10.535 55/AJBR.v27i2S.1404.
  15. Gallego-Molina, A., et al. 2013a. Reducing pollution from the deliming–bating operation in a tannery. Wastewater reuse by microfiltration membranes. Chem. Eng. Res. Design. 91(2): 369–376. DOI: 10.1016/J.CHERD.2012.08.003.
  16. Lei, C., et al. 2020. A cleaner deliming technology with glycine for ammonia-nitrogen reduction in leather manufacture. J. Clean. Prod., 245 (February): 118900. DOI: 10.1016/J.JCLEPRO.2019.118 900.
  17. Joël, A.H., et al. 2023. Micro-organisms from tannery wastewater: Isolation and screening for potential chromium removal. Env. Tech. Innovation. 31 (August): 103167. DOI: 10.1016/j.eti.2023. 103167.
  18. Ausuri, J., et al. 2022. Bioremediation of multiple heavy metals mediated by Antarctic marine isolated Dietzia psychralcaliphila JI1D. J. Marine Sci. Eng., 10 (11): 1669. DOI: 10.3390/jmse10111669.
  19. Cao, S., et al. 2017. B. amyloliquefaciens TCCC 11319, a new Cr(III)-tolerant bacterium for chromium-tanned leather shaving disposal. RSC Adv., 7(19): 11455–11461. DOI: 10.1039/c6ra27954f.
  20. Kalaimurugan, D., et al. 2020. Isolation and characterization of heavy-metal-resistant bacteria and their applications in environmental bioremediation. Int. J. Env. Sci. Tech., 17(3): 1455–1462. DOI: 10.10 07/s13762-019-02563-5.
  21. Dabai, A. I. and K. Mohammed. 2020. Chromium removal from tannery wastewater: a review. J. Sci. Tech., 3(1): 63–73.
  22. Elahi, A., et al. 2022. Isolation and characterization of a highly effective bacterium Bacillus cereus B-525k for hexavalent chromium detoxification. Saudi J. Biol. Sci., 29 (4): 2878–2885. DOI: 10.101 6/j.sjbs.2022.01.027.
  23. Emara, N.S., et al. 2023. Mechanistic action of lead removal by the native isolate Bacillus amyloliqu-efaciens ON261680.1. Arabian J. Chem., 16(8): 104962. DOI: 10.1016/j.arabjc.2023.104962.
  24. Shanmugam, K. and P. Maniammai. 1996. Studies on treated effluent characteristics of a few tanneries at Chrompet. Indian J. Env. Prot.,
  25. Pinta-Melo, J., et al. 2022a. Tolerance and reduction of Cr(VI) by Bacillus amyloliquefaciens, B. thuringiensis and Paenibacillus sp., isolated from Pasto river. Latin American J. Develop., 4 (1): 272–297. DOI: 10.46814/lajdv4n1-020.
  26. Arumugam, V. and R. Kalaivani. 2023. Bamboo plantations for phytoremediation of cadmium in tannery effluent: Plant response and nutrient uptake. Int. J. Life Sci. Pharma. Res., 13(5): L249-L259. DOI: 10.22376/ijlpr.2023.13.5.L249-L259.
  27. Hui, C., et al. 2019. Characterization of the ammonification, the relevant protease production and activity in a high-efficiency ammonifier Bacillus amyloliquefaciens DT. Int. Biodeterioration Biodegradation. 142 (August): 11–17. DOI: 10.1016/j.ib iod.2019.04.009.
  28. Imam, S. and S. Ali. 2016. Comparative study of heavy metal bioremediation in soil by Bacillus subtilis and Saccharomyces cerevisiae. Indian J. Sci.
    Tech.,
    9(1): 1–7. DOI: 10.17485/ijst/2016/v9i47/106911.
  29. Fouda, A., et al. 2023. A thermo-tolerant cellulase enzyme produced by Bacillus amyloliquefaciens M7, an insight into synthesis, optimization, characterization and bio-polishing activity. Green Processing Synthesis. 12 (1). DOI: 10.1515/gps-2023-0127.
  30. Pinki, S., et al. 2021. Microbial reduction and detoxification of chromium from tannery effluent by natural inhabitants. Nature Env. Poll. Tech., 20(3): 1369–1380. DOI: 10.46488/NEPT.2021.V20I03. 051.
  31. Vijayaraj, A.S., et al. 2018. Effective bioremedi-ation and toxicity assessment of tannery wastewaters treated with indigenous bacteria. 3 Biotech., 8(10). DOI: 10.1007/s13205-018-1444-3.
  32. Marzan, L.W., et al. 2017. Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: Bioremediation viewpoint. Egyptian J. Aquatic Res., 43(1): 65–74. DOI: 10.1016/j.ejar. 2016.11.002.
  33. Hussain, A.R.R. and M.A. Mohamed. 2019. Efficacy of microbes in bioremediation of tannery wastewater at Dindigul district. Int. J. Res. Pharma. Sci., 10(4): 3035–3041. DOI: 10.26452/ijrps.v10 i4.1591.
  34. Elizabeth, C., et al. 2017. Isolation and characterization of heavy metal tolerant bacteria from Panteka stream, Kaduna, Nigeria and their potential for bioremediation. African J. Biotech., 16 (1): 32–40. DOI: 10.5897/ajb2016.15676.
  35. Saxena, G., et al. 2020. Degradation and detoxification of leather tannery effluent by a newly developed bacterial consortium GS-TE1310 for environmental safety. J. Water Process Eng., 38 (December): 101592. DOI: 10.1016/J.JWPE.2020.1015 92.
  36. Liknaw, G., T. Tekalign and K. Guya. 2017. Impacts of tannery effluent on environments and human health: A review article. Adv. Life Sci. Tech., 54: 58-67.
  37. Mangayarkarasi, A. and M. Akilan. 2022. physico–chemical analysis of water samples collected from the selected study areas of ranipet district, tamil nadu, india. Poll. Res., 41(04): 1246–1251. DOI: 10.53550/pr.2022.v41i04.016.
  38. Selvi, A., T.K. Sudalayandi and A.T. Selvii. 2012. Isolation and characterization of bacteria from tannery effluent treatment plant and their tolerance to heavy metals and antibiotics. Asian J. Exp. Biol. Sci., 3(1): 34-41.
  39. Kumar, D., S. Kumar and A. Kumar. 2021. Extraction and characterization of secondary metabolites produced by bacteria isolated from industrial wastewater. J. Water Process Eng., 40: 101811. DOI: 10.1016/j.jwpe.2020.101811.
  40. Kalsoom, A., et al. 2023a. Isolation and screening of chromium resistant bacteria from industrial waste for bioremediation purposes. Brazilian J. Biol. 83: e242536. DOI: 10.1590/1519-6984.242536.
  41. Kataria, H.C., et al. 1996. Assessment of water quality of Kolar reservoir in Bhopal (M.P.). Poll. Res., 15(2): 191-193.
  42. Kookhaee, F., A.S.T. Bafroee and L. Jabalameli. 2022. Isolation and characterization of chromium (VI) tolerant bacteria from tannery effluents. J. Env. Health Sci. Eng., 20(1): 443–458. DOI: 10.1007/s40201-022-00791-5.
  43. Monzón-Atienza, L., et al. 2021. Isolation and characterization of a Bacillus velezensis D-18 strain, as a potential probiotic in European seabass aquaculture. Probiotics Antimicrobial Proteins. 13 (5): 1404–1412. DOI: 10.1007/s12602-021-09782-8.
  44. Manivasagan, V., et al. 2017. Efficacy of immo-bilised bacillus cereus during the biodegradation of textile industry effluents. International J. Res. Appl. Natural Social Sci., 5(7): 55–62.
  45. El-Bendary, M. 2021. Optimization of spore laccase production by Bacillus amyloliquefaciens isolated from wastewater and its potential in green bio-decolourization of synthetic textile dyes. Preparative Biochem. Biotech., 51(1): 16–27. DOI: 10.108 0/10826068.2020.1786698.
  46. Sakthivel, M., P.M. Ayyasamy and N. Hemalatha. 2016a. Biotransformation of chromium (Cr-VI to Cr III) from tannery effluent using bacteria and fungi. Int. J. Adv. Res. Biol. Sci. 3(11): 68–79. DOI: 10.2 2192/ijarbs.
  47. Igiri, B., et al. 2018. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. J. Toxicol., DOI: 10.1 155/2018/2568038.
  48. Tufail, M.A., et al. 2022. Recent advances in bio-remediation of heavy metals and persistent organic pollutants: A veview. Sci. Total Env., 850(December): 157961. DOI: 10.1016/J.SCITOTENV.202 2.157961.